Question Number 56525 by Sr@2004 last updated on 18/Mar/19
Commented by Sr@2004 last updated on 18/Mar/19
$${please}\:{solve}\:\mathrm{13}\:{and}\:\mathrm{15} \\ $$
Commented by Sr@2004 last updated on 18/Mar/19
$${sorry}\:\mathrm{13}\:{and}\:\mathrm{14} \\ $$
Answered by MJS last updated on 18/Mar/19
$$\mathrm{13} \\ $$$$\left(\mathrm{1}\right)\:\:\frac{{x}\mathrm{cos}\:\theta}{{a}}+\frac{{y}\mathrm{sin}\:\theta}{{b}}=\mathrm{1}\:\Rightarrow\:{x}=\frac{{a}\left({b}−{y}\mathrm{sin}\:\theta\right)}{{b}\mathrm{cos}\:\theta} \\ $$$$\left(\mathrm{2}\right)\:\:\frac{{ax}}{\mathrm{cos}\:\theta}−\frac{{by}}{\mathrm{sin}\:\theta}={a}^{\mathrm{2}} −{b}^{\mathrm{2}} \:\Rightarrow\:{x}=\frac{{by}+\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}\:\theta}{{a}\mathrm{tan}\:\theta} \\ $$$$\frac{{a}\left({b}−{y}\mathrm{sin}\:\theta\right)}{{b}\mathrm{cos}\:\theta}=\frac{{by}+\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}\:\theta}{{a}\mathrm{tan}\:\theta} \\ $$$$\left({a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta\:+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta\right){y}−{a}^{\mathrm{2}} {b}\mathrm{sin}^{\mathrm{3}} \:\theta\:−{b}^{\mathrm{3}} \mathrm{sin}\:\theta\:\mathrm{cos}^{\mathrm{2}} \:\theta\:=\mathrm{0} \\ $$$$\left({a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta\:+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta\right)\left({y}−{b}\mathrm{sin}\:\theta\right)=\mathrm{0} \\ $$$$\Rightarrow\:{y}={b}\mathrm{sin}\:\theta\:\Rightarrow\:{x}={a}\mathrm{cos}\:\theta\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{sin}\:\theta\:=\frac{{y}}{{b}}\:\wedge\:\mathrm{cos}\:\theta\:=\frac{{x}}{{a}} \\ $$$$\mathrm{insert}: \\ $$$$\Rightarrow\:\left(\mathrm{1}\right)\:\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\wedge\:\left(\mathrm{2}\right)\:\mathrm{true} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Mar/19
$$\left.\mathrm{13}\right)\frac{{xcos}\theta}{{a}}+\frac{{ysin}\theta}{{b}}=\mathrm{1} \\ $$$${xp}+{yq}=\mathrm{1}\:×\frac{\mathrm{1}}{{q}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{p}=\frac{{cos}\theta}{{a}}\:\:\:\:{q}=\frac{{sin}\theta}{{b}}\right] \\ $$$$\frac{{x}}{{p}}−\frac{{y}}{{q}}={a}^{\mathrm{2}} −{b}^{\mathrm{2}} \:\:\:\:\:×{q} \\ $$$$\frac{{xp}}{{q}}+{y}=\frac{\mathrm{1}}{{q}} \\ $$$$\frac{{xq}}{{p}}−{y}={q}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right) \\ $$$${x}\left(\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }{{pq}}\right)={q}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+\frac{\mathrm{1}}{{q}} \\ $$$${x}=\frac{{q}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+\mathrm{1}}{{q}}×\frac{{pq}}{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)} \\ $$$${x}=\frac{{cos}\theta}{{a}}×\frac{\mathrm{1}}{\left(\frac{{cos}\theta}{{a}}\right)^{\mathrm{2}} +\left(\frac{{sin}\theta}{{b}}\right)^{\mathrm{2}} }×\left[\left(\frac{{sin}\theta}{{b}}\right)^{\mathrm{2}} \left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)+\mathrm{1}\right] \\ $$$${x}=\frac{{cos}\theta}{{a}}×\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta+{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}×\left[\frac{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta−{b}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}{{b}^{\mathrm{2}} }\right] \\ $$$$\frac{{x}}{{a}}={cos}\theta×\frac{\mathrm{1}}{{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta+{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta}×\left[{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta\right] \\ $$$$\frac{{x}}{{a}}={cos}\theta \\ $$$$\frac{{xcos}\theta}{{a}}+\frac{{ysin}\theta}{{b}}=\mathrm{1} \\ $$$$\frac{{ysin}\theta}{{b}}=\mathrm{1}−{cos}^{\mathrm{2}} \theta \\ $$$$\frac{{y}}{{b}}={sin}\theta \\ $$$$\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{b}}\right)^{\mathrm{2}} \\ $$$${cos}^{\mathrm{2}} \theta+{sin}^{\mathrm{2}} \theta \\ $$$$=\mathrm{1}\:{proved} \\ $$
Commented by Sr@2004 last updated on 18/Mar/19
$${I}\:{cannot}\:{understand}\:{it}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Mar/19
$$\left.\mathrm{14}\right){sec}\theta=\frac{\mathrm{1}+{sin}\alpha{sin}\beta}{{cos}\alpha{cos}\beta} \\ $$$${tan}^{\mathrm{2}} \theta=\left(\frac{\mathrm{1}+{sin}\alpha{sin}\beta}{{cos}\alpha{cos}\beta}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$$=\frac{\mathrm{1}+\mathrm{2}{sin}\alpha{sin}\beta+{sin}^{\mathrm{2}} \alpha{sin}^{\mathrm{2}} \beta−{cos}^{\mathrm{2}} \alpha{cos}^{\mathrm{2}} \beta}{{cos}^{\mathrm{2}} \alpha{cos}^{\mathrm{2}} \beta} \\ $$$${let}\:{sin}\alpha={a}\:\:\:{cos}\alpha={b} \\ $$$${sin}\beta={c}\:\:\:\:{cos}\beta={d} \\ $$$${RHS} \\ $$$$=\frac{\mathrm{1}+\mathrm{2}{ac}+{a}^{\mathrm{2}} {c}^{\mathrm{2}} −{b}^{\mathrm{2}} {d}^{\mathrm{2}} }{{b}^{\mathrm{2}} {d}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}+\mathrm{2}{ac}+{a}^{\mathrm{2}} {c}^{\mathrm{2}} −\left(\mathrm{1}−{a}^{\mathrm{2}} \right)\left(\mathrm{1}−{c}^{\mathrm{2}} \right)}{{b}^{\mathrm{2}} {d}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}+\mathrm{2}{ac}+{a}^{\mathrm{2}} {c}^{\mathrm{2}} −\mathrm{1}+{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −{a}^{\mathrm{2}} {c}^{\mathrm{2}} }{{b}^{\mathrm{2}} {d}^{\mathrm{2}} } \\ $$$$=\left(\frac{{a}+{c}}{{bd}}\right)^{\mathrm{2}} \\ $$$${tan}\theta=\pm\left(\frac{{a}+{c}}{{bd}}\right) \\ $$$$=\pm\left(\frac{{sin}\alpha}{{cos}\alpha{cos}\beta}+\frac{{sin}\beta}{{cos}\alpha{cos}\beta}\right) \\ $$$$=\pm\left({tan}\alpha{sec}\beta+{tan}\beta{sec}\alpha\right){proved} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Mar/19
$$\left.\mathrm{13}\right){let}\:\frac{{xcos}\theta}{{a}}+\frac{{ysin}\theta}{{b}}=\mathrm{1} \\ $$$${bxcos}\theta+{aysin}\theta={ab} \\ $$$${x}\left({bcos}\theta\right)+{y}\left({asin}\theta\right)={ab}….\left(\mathrm{1}\right) \\ $$$$\frac{{ax}}{{cos}\theta}−\frac{{by}}{{sin}\theta}={a}^{\mathrm{2}} −{b}^{\mathrm{2}} \\ $$$${x}\left({asin}\theta\right)+{y}\left(−{bcos}\theta\right)=\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){sin}\theta{cos}\theta.×{asin}\theta \\ $$$${x}\left({bcos}\theta\right)+{y}\left({asin}\theta\right)={ab}×{bcos}\theta \\ $$$$ \\ $$$${x}\left({a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta\right)={a}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){sin}^{\mathrm{2}} \theta{cos}\theta+{ab}^{\mathrm{2}} {cos}\theta \\ $$$${x}\left({a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta\right)={acos}\theta\left[{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta−{b}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} \right] \\ $$$${x}\left({a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta\right)={acos}\theta\left[{a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta\right] \\ $$$${x}={acos}\theta \\ $$$$\frac{{xcos}\theta}{{a}}+\frac{{ysin}\theta}{{b}}=\mathrm{1} \\ $$$${cos}^{\mathrm{2}} \theta+\frac{{ysin}\theta}{{b}}={sin}^{\mathrm{2}} \theta+{cos}^{\mathrm{2}} \theta \\ $$$$\frac{{ysin}\theta}{{b}}={sin}^{\mathrm{2}} \theta \\ $$$${y}={bsin}\theta \\ $$$${so} \\ $$$$\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{b}}\right)^{\mathrm{2}} \\ $$$${cos}^{\mathrm{2}} \theta+{sin}^{\mathrm{2}} \theta=\mathrm{1}\:{proved} \\ $$$$\frac{}{} \\ $$