Menu Close

Question-56540




Question Number 56540 by Gulay last updated on 18/Mar/19
Commented by Gulay last updated on 18/Mar/19
sir plz plz help me
$$\mathrm{sir}\:\mathrm{plz}\:\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$
Answered by MJS last updated on 18/Mar/19
log_3  162 −log_3  2 =log_3  (2×3^4 ) −log_3  2=  =log_3  3^4  +log_3  2 −log_3  2 =log_3  3^4  =4
$$\mathrm{log}_{\mathrm{3}} \:\mathrm{162}\:−\mathrm{log}_{\mathrm{3}} \:\mathrm{2}\:=\mathrm{log}_{\mathrm{3}} \:\left(\mathrm{2}×\mathrm{3}^{\mathrm{4}} \right)\:−\mathrm{log}_{\mathrm{3}} \:\mathrm{2}= \\ $$$$=\mathrm{log}_{\mathrm{3}} \:\mathrm{3}^{\mathrm{4}} \:+\mathrm{log}_{\mathrm{3}} \:\mathrm{2}\:−\mathrm{log}_{\mathrm{3}} \:\mathrm{2}\:=\mathrm{log}_{\mathrm{3}} \:\mathrm{3}^{\mathrm{4}} \:=\mathrm{4} \\ $$
Commented by Gulay last updated on 18/Mar/19
thank you so much sir God bless you
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir}\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$
Answered by MJS last updated on 18/Mar/19
log_4  8 +log_9  27 =log_4  2^3  +log_9  3^3  =  =log_4  4^(3/2)  +log_9  9^(3/2)  =(3/2)+(3/2)=3
$$\mathrm{log}_{\mathrm{4}} \:\mathrm{8}\:+\mathrm{log}_{\mathrm{9}} \:\mathrm{27}\:=\mathrm{log}_{\mathrm{4}} \:\mathrm{2}^{\mathrm{3}} \:+\mathrm{log}_{\mathrm{9}} \:\mathrm{3}^{\mathrm{3}} \:= \\ $$$$=\mathrm{log}_{\mathrm{4}} \:\mathrm{4}^{\frac{\mathrm{3}}{\mathrm{2}}} \:+\mathrm{log}_{\mathrm{9}} \:\mathrm{9}^{\frac{\mathrm{3}}{\mathrm{2}}} \:=\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}=\mathrm{3} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Mar/19
log_a b −log_a c→log_a ((b/c))  so log_3 162−log_3 (2)=log_3 (((162)/2))→log_3 3^4 →4log_3 3 →4
$${log}_{{a}} {b}\:−{log}_{{a}} {c}\rightarrow{log}_{{a}} \left(\frac{{b}}{{c}}\right) \\ $$$${so}\:{log}_{\mathrm{3}} \mathrm{162}−{log}_{\mathrm{3}} \left(\mathrm{2}\right)={log}_{\mathrm{3}} \left(\frac{\mathrm{162}}{\mathrm{2}}\right)\rightarrow{log}_{\mathrm{3}} \mathrm{3}^{\mathrm{4}} \rightarrow\mathrm{4}{log}_{\mathrm{3}} \mathrm{3}\:\rightarrow\mathrm{4} \\ $$$$ \\ $$
Answered by MJS last updated on 18/Mar/19
log_3  4 ×log_4  9 =((ln 4)/(ln 3))×((ln 9)/(ln 4))=((ln 9)/(ln 3))=log_3  9 =2
$$\mathrm{log}_{\mathrm{3}} \:\mathrm{4}\:×\mathrm{log}_{\mathrm{4}} \:\mathrm{9}\:=\frac{\mathrm{ln}\:\mathrm{4}}{\mathrm{ln}\:\mathrm{3}}×\frac{\mathrm{ln}\:\mathrm{9}}{\mathrm{ln}\:\mathrm{4}}=\frac{\mathrm{ln}\:\mathrm{9}}{\mathrm{ln}\:\mathrm{3}}=\mathrm{log}_{\mathrm{3}} \:\mathrm{9}\:=\mathrm{2} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Mar/19
log_4 8  +log_9 27  now  log_a b  =((log_e b)/(log_e a))=((lnb)/(lna))  log_4 8+log_9 27  =((ln8)/(ln4))+((ln27)/(ln9))  =((ln2^3 )/(ln2^2 ))+((ln3^3 )/(ln3^2 ))  =((3ln2)/(2ln2))+((3ln3)/(2ln3))  =(3/2)+(3/2)  =3
$${log}_{\mathrm{4}} \mathrm{8}\:\:+{log}_{\mathrm{9}} \mathrm{27} \\ $$$${now}\:\:{log}_{{a}} {b}\:\:=\frac{{log}_{{e}} {b}}{{log}_{{e}} {a}}=\frac{{lnb}}{{lna}} \\ $$$${log}_{\mathrm{4}} \mathrm{8}+{log}_{\mathrm{9}} \mathrm{27} \\ $$$$=\frac{{ln}\mathrm{8}}{{ln}\mathrm{4}}+\frac{{ln}\mathrm{27}}{{ln}\mathrm{9}} \\ $$$$=\frac{{ln}\mathrm{2}^{\mathrm{3}} }{{ln}\mathrm{2}^{\mathrm{2}} }+\frac{{ln}\mathrm{3}^{\mathrm{3}} }{{ln}\mathrm{3}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{3}{ln}\mathrm{2}}{\mathrm{2}{ln}\mathrm{2}}+\frac{\mathrm{3}{ln}\mathrm{3}}{\mathrm{2}{ln}\mathrm{3}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$=\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *