Menu Close

Question-56597




Question Number 56597 by Tawa1 last updated on 19/Mar/19
Commented by Tawa1 last updated on 19/Mar/19
Please help me prove the sum of an arithmetico − geometric series,  and the sum to infinity.     Again      How does the 3x in the above solution disappear.  From       3x + (2x^2  + 2x^3  + ... + 2x^n ) − (2n + 1)x^(n + 1)     to                x + (2x + 2x^2  + 2x^3  + ... + 2x^n ) − (2n + 1)x^(n + 1)     in next line ...    Thanks.
$$\mathrm{Please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{prove}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{an}\:\mathrm{arithmetico}\:−\:\mathrm{geometric}\:\mathrm{series}, \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{infinity}.\:\:\: \\ $$$$\boldsymbol{\mathrm{Again}} \\ $$$$\:\:\:\:\mathrm{How}\:\mathrm{does}\:\mathrm{the}\:\mathrm{3x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{above}\:\mathrm{solution}\:\mathrm{disappear}. \\ $$$$\mathrm{From}\:\:\:\:\:\:\:\mathrm{3x}\:+\:\left(\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{2x}^{\mathrm{3}} \:+\:…\:+\:\mathrm{2x}^{\mathrm{n}} \right)\:−\:\left(\mathrm{2n}\:+\:\mathrm{1}\right)\mathrm{x}^{\mathrm{n}\:+\:\mathrm{1}} \:\: \\ $$$$\mathrm{to}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}\:+\:\left(\mathrm{2x}\:+\:\mathrm{2x}^{\mathrm{2}} \:+\:\mathrm{2x}^{\mathrm{3}} \:+\:…\:+\:\mathrm{2x}^{\mathrm{n}} \right)\:−\:\left(\mathrm{2n}\:+\:\mathrm{1}\right)\mathrm{x}^{\mathrm{n}\:+\:\mathrm{1}} \:\: \\ $$$$\mathrm{in}\:\mathrm{next}\:\mathrm{line}\:… \\ $$$$ \\ $$$$\mathrm{Thanks}. \\ $$
Commented by Kunal12588 last updated on 19/Mar/19
3x +(2x^2 +2x^3 +...+2x^n )−..  =x+2x+(2x^2 +2x^3 +...+2x^n )−...  =x+(2x+2x^2 +2x^3 +...+2x^n )−...
$$\mathrm{3}{x}\:+\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{3}} +…+\mathrm{2}{x}^{{n}} \right)−.. \\ $$$$={x}+\mathrm{2}{x}+\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{3}} +…+\mathrm{2}{x}^{{n}} \right)−… \\ $$$$={x}+\left(\mathrm{2}{x}+\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{3}} +…+\mathrm{2}{x}^{{n}} \right)−… \\ $$
Commented by Tawa1 last updated on 19/Mar/19
Ohh. I understand now. God bless you sir ...
$$\mathrm{Ohh}.\:\mathrm{I}\:\mathrm{understand}\:\mathrm{now}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}\:… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *