Menu Close

Question-57044




Question Number 57044 by mr W last updated on 29/Mar/19
Commented by mr W last updated on 29/Mar/19
reposted  Question from Tinkutara sir
repostedQuestionfromTinkutarasir
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Mar/19
number of A type object=2n  numbser of B type object=2n  number of C type object=2n  so total object=6n  to be distributed between two person.  (1+x+x^2 +..+x^(2n) )(1+x+x^2 +...+x^(2n) )(1+x+x^2 +..x^(2n) )  ((1−x^(2n+1) )/(1−x))×((1−x^(2n+1) )/(1−x))×((1−x^(2n+1) )/(1−x))  =(((1−x^(2n+1) )^3 )/((1−x)^3 ))  =(1−x)^(−3) (1−x^(2n+1) )^3   required answer is the coefficient of   x^(3n)  in (1−x)^(−3) (1−x^(2n+1) )^3   =(1+3x+6x^2 +..+(((r+1)(r+2))/(1×2))x^r +..)(1−3x^(2n+1) +3x^(4n+2) −x^(6n+3) )  =(((3n+1)(3n+2))/(1×2))x^(3n) −3x^(2n+1) ×(((n−1+1)(n−1+2))/(1×2))x^(n−1)   =x^(3n) {((9n^2 +9n+2)/2)−(3/2)×(n^2 +n)}  =(x^(3n) /2)(9n^2 +9n+2−3n^2 −3n)  =(x^(3n) /2)(6n^2 +6n+2)  so answer is 3n^2 +3n+1
numberofAtypeobject=2nnumbserofBtypeobject=2nnumberofCtypeobject=2nsototalobject=6ntobedistributedbetweentwoperson.(1+x+x2+..+x2n)(1+x+x2++x2n)(1+x+x2+..x2n)1x2n+11x×1x2n+11x×1x2n+11x=(1x2n+1)3(1x)3=(1x)3(1x2n+1)3requiredansweristhecoefficientofx3nin(1x)3(1x2n+1)3=(1+3x+6x2+..+(r+1)(r+2)1×2xr+..)(13x2n+1+3x4n+2x6n+3)=(3n+1)(3n+2)1×2x3n3x2n+1×(n1+1)(n1+2)1×2xn1=x3n{9n2+9n+2232×(n2+n)}=x3n2(9n2+9n+23n23n)=x3n2(6n2+6n+2)soansweris3n2+3n+1
Commented by mr W last updated on 30/Mar/19
thanks sir! nice proof!    (((1−x^(2n+1) )^3 )/((1−x)^3 ))  =(1−3x^(2n+1) +3x^(4n+2) −x^(6n+3) )Σ_(k=0) ^∞ C_k ^(2+k) x^k   x^(3n) : C_(3n) ^(2+3n) −3C_(n−1) ^(n+1) =C_2 ^(3n+2) −3C_2 ^(n+1)   =(((3n+2)(3n+1)−3(n+1)n)/2)  =((6n^2 +6n+2)/2)  =3n^2 +3n+1
thankssir!niceproof!(1x2n+1)3(1x)3=(13x2n+1+3x4n+2x6n+3)k=0Ck2+kxkx3n:C3n2+3n3Cn1n+1=C23n+23C2n+1=(3n+2)(3n+1)3(n+1)n2=6n2+6n+22=3n2+3n+1
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Mar/19
this platform bind us by invisble bond and boost  us to quench our thirst of quest to find the truth...  the solution...
thisplatformbindusbyinvisblebondandboostustoquenchourthirstofquesttofindthetruththesolution

Leave a Reply

Your email address will not be published. Required fields are marked *