Question Number 57084 by frimpshaddie last updated on 30/Mar/19
Commented by Kunal12588 last updated on 30/Mar/19
$$\left({d}\right)\:{when}\:{the}\:{velocity}\:{of}\:{particle}\:{becomes}\:\mathrm{0} \\ $$$${then}\:{the}\:{particle}\:{is}\:{said}\:{to}\:{be}\:{in}\:{rest} \\ $$$$\left({horizontal}\:{motion}\:{only}\right) \\ $$$$\therefore{v}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}{t}^{\mathrm{2}} −\mathrm{6}{t}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}{t}\left({t}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow{t}=\mathrm{0}\:{or}\:{t}=\mathrm{2} \\ $$$${at}\:{t}=\mathrm{0}{s} \\ $$$${s}=\left(\mathrm{0}\right)^{\mathrm{3}} −\mathrm{2}\left(\mathrm{0}\right)^{\mathrm{2}} +\mathrm{1}=\mathrm{1}{m} \\ $$$${at}\:{t}=\mathrm{2}{s} \\ $$$${s}=\left(\mathrm{2}\right)^{\mathrm{3}} −\mathrm{2}\left(\mathrm{2}\right)^{\mathrm{2}} +\mathrm{1}=\mathrm{8}−\mathrm{8}+\mathrm{1}=\mathrm{1}{m} \\ $$$${when}\::−\:{time}\:{is}\:{equal}\:{to}\:\mathrm{0}{s}\:{or}\:\mathrm{2}{s} \\ $$$${where}\::−\:{distance}\:{is}\:{equal}\:{to}\:\mathrm{1}{m} \\ $$
Commented by kkc last updated on 30/Mar/19
$$ \\ $$
Answered by Kunal12588 last updated on 30/Mar/19
$$\left({a}\right)\:{v}=\frac{{ds}}{{dt}}=\frac{{d}}{{dt}}\left({t}^{\mathrm{3}} −\mathrm{2}{t}^{\mathrm{2}} +\mathrm{1}\right) \\ $$$$\Rightarrow{v}=\mathrm{3}{t}^{\mathrm{2}} −\mathrm{6}{t} \\ $$$${t}=\mathrm{2}{s} \\ $$$$\Rightarrow{v}=\mathrm{3}\left(\mathrm{2}\right)^{\mathrm{2}} −\mathrm{6}\left(\mathrm{2}\right)=\:\mathrm{0}\:{ms}^{−\mathrm{1}} \\ $$
Answered by Kunal12588 last updated on 30/Mar/19
$$\left({b}\right)\:{v}_{{av}} =\frac{{s}_{{final}} −{s}_{{initial}} }{{t}_{{final}} −{t}_{{initial}} } \\ $$$${t}_{{initial}} =\mathrm{0}{s} \\ $$$${s}_{{initial}} =\left(\mathrm{0}\right)^{\mathrm{3}} −\mathrm{2}\left(\mathrm{0}\right)^{\mathrm{2}} +\mathrm{1}=\mathrm{1}\:{m} \\ $$$${t}_{{final}} =\mathrm{3}{s} \\ $$$${s}_{{final}} =\left(\mathrm{3}\right)^{\mathrm{3}} −\mathrm{2}\left(\mathrm{3}\right)^{\mathrm{2}} +\mathrm{1}=\mathrm{27}−\mathrm{18}+\mathrm{1}=\mathrm{10}{m} \\ $$$$\therefore{v}_{{av}} =\frac{\mathrm{10}−\mathrm{1}}{\mathrm{3}−\mathrm{0}}=\frac{\mathrm{9}}{\mathrm{3}}=\mathrm{3}{ms}^{−\mathrm{1}} \\ $$
Answered by Kunal12588 last updated on 30/Mar/19
$$\left({c}\right){a}_{{av}} =\frac{{v}_{\mathrm{2}} −{v}_{\mathrm{1}} }{{t}_{\mathrm{2}} −{t}_{\mathrm{1}} } \\ $$$${v}=\mathrm{3}{t}^{\mathrm{2}} −\mathrm{6}{t} \\ $$$${t}_{\mathrm{2}} =\mathrm{3}{s} \\ $$$$\Rightarrow{v}_{\mathrm{2}} =\mathrm{3}\left(\mathrm{3}\right)^{\mathrm{2}} −\mathrm{6}\left(\mathrm{3}\right)=\mathrm{27}−\mathrm{18}=\mathrm{9}\:{ms}^{−\mathrm{1}} \\ $$$${t}_{\mathrm{1}} =\mathrm{1}{s} \\ $$$${v}_{\mathrm{1}} =\mathrm{3}\left(\mathrm{1}\right)^{\mathrm{2}} −\mathrm{6}\left(\mathrm{1}\right)=\mathrm{3}−\mathrm{6}=−\mathrm{3}{ms}^{−\mathrm{1}} \\ $$$$\therefore{a}_{{av}} =\frac{\mathrm{9}−\left(−\mathrm{3}\right)}{\mathrm{3}−\mathrm{1}}=\frac{\mathrm{12}}{\mathrm{2}}=\mathrm{6}{ms}^{−\mathrm{2}} \\ $$
Answered by kkc last updated on 30/Mar/19
$$ \\ $$