Menu Close

Question-57186




Question Number 57186 by Tawa1 last updated on 31/Mar/19
Commented by kaivan.ahmadi last updated on 31/Mar/19
 determinant (((1         1            1)),((a          b           c)),((a^2         b^2       c^2 )))→_(−a^2 R_1 +R_3 ) ^(−aR_1 +R_2 )  and Sarrus Rule   determinant (((1      1             1)),((0      b−a      c−a)),((0    b^2 −a^2      c^2 −a^2 ))) determinant (((1    1                 1)),((0    b−a         c−a)),((0    b^2 −a^2      c^2 −a^2 )))=  [(b−a)(c^2 −a^2 )+0+0]−[0+0+(b^2 −a^2 )(c−a)]=  (b−a)(c−a)(c+a)−(b−a)(b+a)(c−a)=  (b−a)(c−a)[ (c+a)−(b+a)]=  (b−a)(c−a)(c−b)
|111abca2b2c2|aR1+R2a2R1+R3andSarrusRule|1110baca0b2a2c2a2||1110baca0b2a2c2a2|=[(ba)(c2a2)+0+0][0+0+(b2a2)(ca)]=(ba)(ca)(c+a)(ba)(b+a)(ca)=(ba)(ca)[(c+a)(b+a)]=(ba)(ca)(cb)
Commented by kaivan.ahmadi last updated on 31/Mar/19
this determinant is vandermlnd.  easly i change a=a_1 ,b=a_2  and c=a_3
thisdeterminantisvandermlnd.easlyichangea=a1,b=a2andc=a3
Commented by Tawa1 last updated on 31/Mar/19
God bless you sir
Godblessyousir
Answered by tanmay.chaudhury50@gmail.com last updated on 31/Mar/19
∣0                                                  0                      1∣  ∣a_1 −a_3                                   a_2 −a_3                 a_3 ∣  ∣(a_1 +a_3 )(a_1 −a_3 )  (a_2 +a_3 )(a_2 −a_3 )       a_3 ^2  ∣    (a_1 −a_3 )(a_2 −a_3 )∣0            0                   1∣                                     ∣1             1                 a_3 ∣                                     ∣a_1 +a_3      a_2 +a_3        a_3 ^2   ∣  (a_1 −a_3 )(a_2 −a_3 )(a_2 +a_3 −a_1 −a_3 )  =(a_2 −a_1 )(a_3 −a_1 )(a_3 −a_2 )  printing error in problem element   printed (a_1 ^2 )_(3×3) but should be(a_3 ^2 )_(3×3)
001a1a3a2a3a3(a1+a3)(a1a3)(a2+a3)(a2a3)a32(a1a3)(a2a3)00111a3a1+a3a2+a3a32(a1a3)(a2a3)(a2+a3a1a3)=(a2a1)(a3a1)(a3a2)printingerrorinproblemelementprinted(a12)3×3butshouldbe(a32)3×3
Commented by Tawa1 last updated on 31/Mar/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *