Question Number 57363 by Tawa1 last updated on 03/Apr/19
Commented by Tawa1 last updated on 03/Apr/19
$$\mathrm{Please}\:\mathrm{help}.\:\mathrm{my}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{from}\:\:\frac{\mathrm{2}^{\mathrm{m}} \:.\:\mathrm{m}\left(\mathrm{m}\:+\:\mathrm{1}\right)\left(\mathrm{m}\:+\:\mathrm{2}\right)\:….\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)}{\mathrm{1}.\mathrm{3}.\mathrm{5}.\:…….\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)} \\ $$$$\mathrm{now}\:\mathrm{why}\:\mathrm{did}\:\mathrm{they}\:\mathrm{multiply}\:\mathrm{Numerator}\:\mathrm{and}\:\mathrm{denominator}\:\mathrm{by} \\ $$$$\left(\mathrm{m}\:−\:\mathrm{1}\right)!.\:\mathrm{2m}\:\:\mathrm{to}\:\mathrm{get}\:… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}^{\mathrm{m}} \:.\:\mathrm{m}\left(\mathrm{m}\:+\:\mathrm{1}\right)\left(\mathrm{m}\:+\:\mathrm{2}\right)\:….\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)\:×\:\left(\mathrm{m}\:−\:\mathrm{1}\right)!.\:\mathrm{2m}}{\left[\mathrm{1}.\mathrm{3}.\mathrm{5}.\:…….\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)\right]\:…….\:.\:\left(\mathrm{m}\:−\:\mathrm{1}\right)!\:.\:\mathrm{2m}\:} \\ $$$$\mathrm{And}\:\mathrm{suddenly}\:\mathrm{becomes} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}^{\mathrm{m}} \:.\:\left(\mathrm{2m}\right)!}{\left[\mathrm{1}.\mathrm{3}.\mathrm{5}.\:…….\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)\right]\:…….\:.\:\left(\mathrm{m}\:−\:\mathrm{1}\right)!\:.\:\mathrm{2m}\:} \\ $$$$\mathrm{And}\:\mathrm{later}.\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}^{\mathrm{m}} \:.\:\mathrm{2}^{\mathrm{m}} \:\:\mathrm{m}!\left[\mathrm{1}.\mathrm{3}.\mathrm{5}\:.\:….\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)\right]}{\left[\mathrm{1}.\mathrm{3}.\mathrm{5}.\:…….\:\left(\mathrm{2m}\:−\:\mathrm{1}\right)\right]\:…….\:.\:\left(\mathrm{m}\:−\:\mathrm{1}\right)!\:.\:\mathrm{2m}\:} \\ $$$$\mathrm{So},\:\mathrm{i}\:\mathrm{don}'\mathrm{t}\:\mathrm{understand}\:\mathrm{all}\:\mathrm{the}\:\mathrm{steps}\:\mathrm{jump}. \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{want}\:\mathrm{to}\:\mathrm{cram},\:\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{understand}\:\mathrm{the}\:\mathrm{steps}\:\mathrm{because} \\ $$$$\mathrm{of}\:\mathrm{exam}.\: \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Apr/19
$${look}\:{at}\:{the}\:{D}_{{r}} =\mathrm{1}.\mathrm{3}.\mathrm{5}….\left({n}−\mathrm{1}\right) \\ $$$${D}_{{r}} =\left({n}−\mathrm{1}\right)…\mathrm{5}.\mathrm{3}.\mathrm{1}\:\:\leftarrow{look}\:{even}\:{number}\:{are}\:{missing} \\ $$$${so}\:{D}_{{r}} =\left[\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\left({n}−\mathrm{3}\right)\left({n}−\mathrm{4}\right)..\mathrm{6}.\mathrm{5}.\mathrm{4}.\mathrm{3}.\mathrm{2}.\mathrm{1}\right]×\frac{\mathrm{1}}{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{4}\right)..\mathrm{6}.\mathrm{4}.\mathrm{2}} \\ $$$${here}\:{i}\:{have}\:{inserted}\:{even}\:{numbers}\:{and}\:{devided} \\ $$$${by}\:{same}\:{even}\:{numbers}\:{to}\:{keep}\:{the}\:{value}\:{of} \\ $$$${D}_{{r}} ={fixed} \\ $$$${D}_{{r}} =\frac{\mathrm{1}}{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{4}\right)…\mathrm{6}.\mathrm{4}.\mathrm{2}}×\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\left({n}−\mathrm{3}\right)..\mathrm{6}.\mathrm{5}.\mathrm{4}.\mathrm{3}.\mathrm{2}.\mathrm{1} \\ $$$${D}_{{r}} =\frac{\left({n}−\mathrm{1}\right)!}{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{4}\right)..\mathrm{6}.\mathrm{4}.\mathrm{2}} \\ $$$${now} \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{{n}\left({n}+\mathrm{2}\right)\left({n}+\mathrm{4}\right)..\left(\mathrm{2}{n}−\mathrm{2}\right)}{\frac{\left({n}−\mathrm{1}\right)!}{\left({n}−\mathrm{2}\right)\left({n}−\mathrm{4}\right)..\mathrm{6}.\mathrm{4}.\mathrm{2}}} \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{\left(\mathrm{2}{n}−\mathrm{2}\right)\left(\mathrm{2}{n}−\mathrm{4}\right)…\left({n}+\mathrm{4}\right)\left({n}+\mathrm{2}\right){n}×\left({n}−\mathrm{2}\right)\left({n}−\mathrm{4}\right)\left({n}−\mathrm{6}\right)..\mathrm{6}.\mathrm{4}.\mathrm{2}}{\left({n}−\mathrm{1}\right)\centerdot} \\ $$$$ \\ $$$${let}\:{n}=\mathrm{2}{k}\:\: \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{\left(\mathrm{4}{k}−\mathrm{2}\right)\left(\mathrm{4}{k}−\mathrm{4}\right)..\left(\mathrm{2}{k}+\mathrm{4}\right)\left(\mathrm{2}{k}+\mathrm{2}\right)\left(\mathrm{2}{k}\right)\left(\mathrm{2}{k}−\mathrm{2}\right)\left(\mathrm{2}{k}−\mathrm{4}\right)\left(\mathrm{2}{k}−\mathrm{6}\right)..\mathrm{6}.\mathrm{4}.\mathrm{2}}{\left(\mathrm{2}{k}−\mathrm{1}\right)!} \\ $$$${now}\:{in}\:{AP}\:{series}\:{first}\:{term}=\mathrm{2} \\ $$$${common}\:{difference}=+\mathrm{2} \\ $$$${T}_{{r}} =\mathrm{2}+\left({r}−\mathrm{1}\right)\mathrm{2}\rightarrow\mathrm{2}{r} \\ $$$$\mathrm{2}{r}=\mathrm{4}{k}−\mathrm{2}\:\:\:{hence}\:{r}=\mathrm{2}{k}−\mathrm{1} \\ $$$$\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{\mathrm{2}\left(\mathrm{2}{k}−\mathrm{1}\right)×\mathrm{2}\left(\mathrm{2}{k}−\mathrm{2}\right)×..\mathrm{2}\left({k}+\mathrm{2}\right)×\mathrm{2}\left({k}+\mathrm{1}\right)×\mathrm{2}\left({k}\right)×\mathrm{2}\left({k}−\mathrm{1}\right)×\mathrm{2}\left({k}−\mathrm{3}\right)..\mathrm{2}×\left(\mathrm{3}\right)×\mathrm{2}\left(\mathrm{2}\right)×\mathrm{2}\left(\mathrm{1}\right)}{\left(\mathrm{2}{k}−\mathrm{1}\right)!} \\ $$$${now}\:{how}\:{many}\:\mathrm{2}\:{are}\:{multiplied}\:{in}\:{N}_{{r}} .. \\ $$$${we}\:{have}\:{caculated}\:\:{using}\:{AP}\:{series}\:{formula} \\ $$$$\:{that}\:{is}\:{r}\rightarrow\:\:\left[{r}=\mathrm{2}{k}−\mathrm{1}\right] \\ $$$${so}\:\frac{{N}_{{r}} }{{D}_{{r}} }=\frac{\mathrm{2}^{\mathrm{2}{k}−\mathrm{1}} ×\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{2}{k}−\mathrm{2}\right)×..\left({k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right)\left({k}\right)\left({k}−\mathrm{1}\right)..\mathrm{3}.\mathrm{2}.\mathrm{1}}{\left(\mathrm{2}{k}−\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{2}^{\mathrm{2}{k}−\mathrm{1}} ×\left(\mathrm{2}{k}−\mathrm{1}\right)!}{\left(\mathrm{2}{k}−\mathrm{1}\right)!} \\ $$$$=\mathrm{2}^{\mathrm{2}{k}−\mathrm{1}} \\ $$$$=\mathrm{2}^{{n}−\mathrm{1}} \:\:\left[{n}=\mathrm{2}{k}\:{we}\:{clnsidered}\right] \\ $$
Commented by Tawa1 last updated on 03/Apr/19
$$\mathrm{Wow}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$