Question Number 57383 by Tinkutara last updated on 03/Apr/19
Commented by Tinkutara last updated on 03/Apr/19
B part
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Apr/19
$${cos}^{−\mathrm{1}} \left({y}\right)+{cos}^{−\mathrm{1}} \left({bxy}\right)=\frac{\pi}{\mathrm{2}}−{sin}^{−\mathrm{1}} \left({ax}\right) \\ $$$${cos}\left\{{cos}^{−\mathrm{1}} \left({y}\right)+{cos}^{−\mathrm{1}} \left({bxy}\right)\right\}={cos}\left(\frac{\pi}{\mathrm{2}}−{sin}^{−\mathrm{1}} {ax}\right) \\ $$$${y}×{bxy}−\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }\:×\sqrt{\mathrm{1}−{b}^{\mathrm{2}} {x}^{\mathrm{2}} {y}^{\mathrm{2}} }\:={ax} \\ $$$${bxy}^{\mathrm{2}} −{ax}=\sqrt{\mathrm{1}−{y}^{\mathrm{2}} }\:×\sqrt{\mathrm{1}−{b}^{\mathrm{2}} {x}^{\mathrm{2}} {y}^{\mathrm{2}} }\: \\ $$$${b}^{\mathrm{2}} {x}^{\mathrm{2}} {y}^{\mathrm{4}} +{a}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{abx}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{1}−{b}^{\mathrm{2}} {x}^{\mathrm{2}} {y}^{\mathrm{2}} −{y}^{\mathrm{2}} +{b}^{\mathrm{2}} {x}^{\mathrm{2}} {y}^{\mathrm{4}} \\ $$$${a}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{abx}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}+{b}^{\mathrm{2}} {x}^{\mathrm{2}} {y}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$ \\ $$$${now}\:{a}=\mathrm{1}\:\:{b}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\rightarrow{circle} \\ $$$${when} \\ $$$${a}=\mathrm{1}\:\:{b}=\mathrm{1} \\ $$$$ \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} −{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}+{y}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} \left(\mathrm{1}−{y}^{\mathrm{2}} \right)−\left(\mathrm{1}−{y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({y}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$${a}=\mathrm{1}\:\:{b}=\mathrm{2} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$${a}=\mathrm{2}\:\:{b}=\mathrm{2} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\mathrm{8}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}+{y}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} \left(\mathrm{1}−{y}^{\mathrm{2}} \right)−\left(\mathrm{1}−{y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({y}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$${plscheck}.. \\ $$$$ \\ $$
Commented by Tinkutara last updated on 03/Apr/19
What is wrong in my method for B part?
Commented by Tinkutara last updated on 03/Apr/19
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Apr/19
$${x}^{\mathrm{2}} \left({y}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} =\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right) \\ $$$${x}^{\mathrm{2}} \left(\mathrm{1}−{y}^{\mathrm{2}} \right)^{\mathrm{2}} =\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right) \\ $$$${x}^{\mathrm{2}} \left(\mathrm{1}−{y}^{\mathrm{2}} \right)^{\mathrm{2}} −\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} −{x}^{\mathrm{2}} {y}^{\mathrm{2}} −\mathrm{1}+{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\left({x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({y}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$${now}\:{your}\:{steps} \\ $$$${x}\left({y}^{\mathrm{2}} −\mathrm{1}\right)=\sqrt{\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right)}\: \\ $$$${x}^{\mathrm{2}} \left({y}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} =\left(\mathrm{1}−{y}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right) \\ $$$$\boldsymbol{{nxt}}\:\boldsymbol{{step}}\:\boldsymbol{{should}}\:\boldsymbol{{be}}\bigstar\bigstar\:\boldsymbol{{but}}\:\boldsymbol{{you}}\:\boldsymbol{{cancelled}}\:\left(\boldsymbol{{y}}^{\mathrm{2}} −\mathrm{1}\right)\:\boldsymbol{{from}}\:\boldsymbol{{both}}\:\boldsymbol{{side}} \\ $$$$\boldsymbol{{x}}^{\mathrm{2}} \left(\mathrm{1}−\boldsymbol{{y}}^{\mathrm{2}} \right)^{\mathrm{2}} −\left(\mathrm{1}−\boldsymbol{{y}}^{\mathrm{2}} \right)\left(\mathrm{1}−\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\boldsymbol{{since}}\:\left(\boldsymbol{{a}}−\boldsymbol{{b}}\right)^{\mathrm{2}} =\left(\boldsymbol{{b}}−\boldsymbol{{a}}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{1}−\boldsymbol{{y}}^{\mathrm{2}} \right)\left(\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} −\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\left(\mathrm{1}−\boldsymbol{{y}}^{\mathrm{2}} \right)\left(\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\left(\boldsymbol{{y}}^{\mathrm{2}} −\mathrm{1}\right)\left(\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$
Commented by Tinkutara last updated on 03/Apr/19
Thank you so much Sir!
I was confused with it for long!