Menu Close

Question-57698




Question Number 57698 by rahul 19 last updated on 10/Apr/19
Commented by rahul 19 last updated on 10/Apr/19
3rd plane can be written as :  P_1 +ΥP_2  , how to find  Υ?  here λ=3,μ=7 but then Υ is not unique!
$$\mathrm{3}{rd}\:{plane}\:{can}\:{be}\:{written}\:{as}\:: \\ $$$${P}_{\mathrm{1}} +\Upsilon{P}_{\mathrm{2}} \:,\:{how}\:{to}\:{find}\:\:\Upsilon? \\ $$$${here}\:\lambda=\mathrm{3},\mu=\mathrm{7}\:{but}\:{then}\:\Upsilon\:{is}\:{not}\:{unique}! \\ $$
Answered by mr W last updated on 10/Apr/19
(ii)−(i):  y+z=1      ...(iv)  (iii)−(i):  2y+(λ−1)z=μ−5     ...(v)  (v)−2(iv):  ⇒(λ−3)z=μ−7  ⇒λ=3, μ=7  λ+μ=10  ⇒(2) is correct.
$$\left({ii}\right)−\left({i}\right): \\ $$$${y}+{z}=\mathrm{1}\:\:\:\:\:\:…\left({iv}\right) \\ $$$$\left({iii}\right)−\left({i}\right): \\ $$$$\mathrm{2}{y}+\left(\lambda−\mathrm{1}\right){z}=\mu−\mathrm{5}\:\:\:\:\:…\left({v}\right) \\ $$$$\left({v}\right)−\mathrm{2}\left({iv}\right): \\ $$$$\Rightarrow\left(\lambda−\mathrm{3}\right){z}=\mu−\mathrm{7} \\ $$$$\Rightarrow\lambda=\mathrm{3},\:\mu=\mathrm{7} \\ $$$$\lambda+\mu=\mathrm{10} \\ $$$$\Rightarrow\left(\mathrm{2}\right)\:{is}\:{correct}. \\ $$
Commented by rahul 19 last updated on 10/Apr/19
Sir, what's the problem in my method?
Commented by mr W last updated on 10/Apr/19
method is ok sir. you can get the same  result.  P_1 +ΥP_2 :  (1+Υ)x+(1+2Υ)y+(1+2Υ)z=(5+6Υ)  ⇒x+((1+2Υ)/(1+Υ))y+((1+2Υ)/(1+Υ))z=((5+6Υ)/(1+Υ))  P_3 : x+3y+λz=μ  ⇒((1+2Υ)/(1+Υ))=3 ⇒ Υ=−2  ⇒((1+2Υ)/(1+Υ))=λ=3  ⇒((5+6Υ)/(1+Υ))=μ=6−(1/(1+Υ))=7  ⇒λ+μ=3+7=10
$${method}\:{is}\:{ok}\:{sir}.\:{you}\:{can}\:{get}\:{the}\:{same} \\ $$$${result}. \\ $$$${P}_{\mathrm{1}} +\Upsilon{P}_{\mathrm{2}} : \\ $$$$\left(\mathrm{1}+\Upsilon\right){x}+\left(\mathrm{1}+\mathrm{2}\Upsilon\right){y}+\left(\mathrm{1}+\mathrm{2}\Upsilon\right){z}=\left(\mathrm{5}+\mathrm{6}\Upsilon\right) \\ $$$$\Rightarrow{x}+\frac{\mathrm{1}+\mathrm{2}\Upsilon}{\mathrm{1}+\Upsilon}{y}+\frac{\mathrm{1}+\mathrm{2}\Upsilon}{\mathrm{1}+\Upsilon}{z}=\frac{\mathrm{5}+\mathrm{6}\Upsilon}{\mathrm{1}+\Upsilon} \\ $$$${P}_{\mathrm{3}} :\:{x}+\mathrm{3}{y}+\lambda{z}=\mu \\ $$$$\Rightarrow\frac{\mathrm{1}+\mathrm{2}\Upsilon}{\mathrm{1}+\Upsilon}=\mathrm{3}\:\Rightarrow\:\Upsilon=−\mathrm{2} \\ $$$$\Rightarrow\frac{\mathrm{1}+\mathrm{2}\Upsilon}{\mathrm{1}+\Upsilon}=\lambda=\mathrm{3} \\ $$$$\Rightarrow\frac{\mathrm{5}+\mathrm{6}\Upsilon}{\mathrm{1}+\Upsilon}=\mu=\mathrm{6}−\frac{\mathrm{1}}{\mathrm{1}+\Upsilon}=\mathrm{7} \\ $$$$\Rightarrow\lambda+\mu=\mathrm{3}+\mathrm{7}=\mathrm{10} \\ $$
Commented by rahul 19 last updated on 11/Apr/19
Thanks Sir.  I was doing 1+Υ=1 , 1+2Υ=3 i.e  i didn′t make coeff. of x as 1.
$${Thanks}\:{Sir}. \\ $$$${I}\:{was}\:{doing}\:\mathrm{1}+\Upsilon=\mathrm{1}\:,\:\mathrm{1}+\mathrm{2}\Upsilon=\mathrm{3}\:{i}.{e} \\ $$$${i}\:{didn}'{t}\:{make}\:{coeff}.\:{of}\:{x}\:{as}\:\mathrm{1}. \\ $$
Commented by mr W last updated on 11/Apr/19
the coefficients must not be the same,  only the ratios between them must be  the same.
$${the}\:{coefficients}\:{must}\:{not}\:{be}\:{the}\:{same}, \\ $$$${only}\:{the}\:{ratios}\:{between}\:{them}\:{must}\:{be} \\ $$$${the}\:{same}.\: \\ $$
Commented by rahul 19 last updated on 11/Apr/19
Ok Sir!:)
$$\left.{Ok}\:{Sir}!:\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *