Menu Close

Question-57735




Question Number 57735 by Tawa1 last updated on 10/Apr/19
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Apr/19
    s=2t^3 −13t^2 +20t  s=t(2t^2 −13t+20)  s=t(2t^2 −8t−5t+20)     =t{2t(t−4)−5(t−4)}      =t(t−4)(2t−5)  s=0  when t=0,t=4  and t=2.5   when t=4  s=0  that means in 4 seconds it cover same distance  twice but in opposite direction .hence displace  ment is zero.  S_(t=2) =2(2−4)(2×2−5)=2×−2×−1=4  so total distance covered in 4 seconds=2×4=8 meter    S=2t^3 −13t^2 +20t  (dS/dt)=6t^2 −26t+20     (d^2 s/dt^2 )=12t−26  given accelaration −ve  (d^2 s/dt^2 )<0  12t−26<0   →t<((26)/(12))  so in  time duration   ((13)/6)> t>0 acc is negetive  pls check is it correect answer..  then maximum speed to[be calculated  (ds/dt)=6t^2 −26t+20   when t=0    (ds/dt)=20  that means initial  velocity=20.    now (d^2 s/dt^2 )=12t−26  now in time interval   ((26)/(12))>t>0  accelaration is −ve   so in time interval [0,((26)/(12))] vel_(max) =speed_(max) =20  in time interval  [((26)/(12)),4]  acc is +ve  (ds/dt)=6t^2 −26t+20  6t^2 −26t+20=0  3t^2 −13t+10=0  3t^2 −3t−10t+10=0  3t(t−1)−10(t−1)=0  (t−1)((3t−10)=0  when t=1   velocity=0  when t=((10)/3)   velocity=0  so in time interval  4>t>0  max speed is=20  pls check
$$ \\ $$$$ \\ $$$${s}=\mathrm{2}{t}^{\mathrm{3}} −\mathrm{13}{t}^{\mathrm{2}} +\mathrm{20}{t} \\ $$$${s}={t}\left(\mathrm{2}{t}^{\mathrm{2}} −\mathrm{13}{t}+\mathrm{20}\right) \\ $$$${s}={t}\left(\mathrm{2}{t}^{\mathrm{2}} −\mathrm{8}{t}−\mathrm{5}{t}+\mathrm{20}\right) \\ $$$$\:\:\:={t}\left\{\mathrm{2}{t}\left({t}−\mathrm{4}\right)−\mathrm{5}\left({t}−\mathrm{4}\right)\right\} \\ $$$$\:\:\:\:={t}\left({t}−\mathrm{4}\right)\left(\mathrm{2}{t}−\mathrm{5}\right) \\ $$$${s}=\mathrm{0}\:\:{when}\:{t}=\mathrm{0},{t}=\mathrm{4}\:\:{and}\:{t}=\mathrm{2}.\mathrm{5} \\ $$$$\:{when}\:{t}=\mathrm{4}\:\:{s}=\mathrm{0} \\ $$$${that}\:{means}\:{in}\:\mathrm{4}\:{seconds}\:{it}\:{cover}\:{same}\:{distance} \\ $$$${twice}\:{but}\:{in}\:{opposite}\:{direction}\:.{hence}\:{displace} \\ $$$${ment}\:{is}\:{zero}. \\ $$$${S}_{{t}=\mathrm{2}} =\mathrm{2}\left(\mathrm{2}−\mathrm{4}\right)\left(\mathrm{2}×\mathrm{2}−\mathrm{5}\right)=\mathrm{2}×−\mathrm{2}×−\mathrm{1}=\mathrm{4} \\ $$$${so}\:{total}\:{distance}\:{covered}\:{in}\:\mathrm{4}\:{seconds}=\mathrm{2}×\mathrm{4}=\mathrm{8}\:{meter} \\ $$$$ \\ $$$${S}=\mathrm{2}{t}^{\mathrm{3}} −\mathrm{13}{t}^{\mathrm{2}} +\mathrm{20}{t} \\ $$$$\frac{{dS}}{{dt}}=\mathrm{6}{t}^{\mathrm{2}} −\mathrm{26}{t}+\mathrm{20} \\ $$$$\:\:\:\frac{{d}^{\mathrm{2}} {s}}{{dt}^{\mathrm{2}} }=\mathrm{12}{t}−\mathrm{26} \\ $$$${given}\:{accelaration}\:−{ve} \\ $$$$\frac{{d}^{\mathrm{2}} {s}}{{dt}^{\mathrm{2}} }<\mathrm{0} \\ $$$$\mathrm{12}{t}−\mathrm{26}<\mathrm{0}\:\:\:\rightarrow{t}<\frac{\mathrm{26}}{\mathrm{12}} \\ $$$${so}\:{in}\:\:{time}\:{duration}\:\:\:\frac{\mathrm{13}}{\mathrm{6}}>\:{t}>\mathrm{0}\:{acc}\:{is}\:{negetive} \\ $$$${pls}\:{check}\:{is}\:{it}\:{correect}\:{answer}.. \\ $$$${then}\:{maximum}\:{speed}\:{to}\left[{be}\:{calculated}\right. \\ $$$$\frac{{ds}}{{dt}}=\mathrm{6}{t}^{\mathrm{2}} −\mathrm{26}{t}+\mathrm{20}\:\:\:{when}\:{t}=\mathrm{0}\:\:\:\:\frac{{ds}}{{dt}}=\mathrm{20}\:\:{that}\:{means}\:{initial} \\ $$$${velocity}=\mathrm{20}.\:\: \\ $$$${now}\:\frac{{d}^{\mathrm{2}} {s}}{{dt}^{\mathrm{2}} }=\mathrm{12}{t}−\mathrm{26}\:\:{now}\:{in}\:{time}\:{interval}\: \\ $$$$\frac{\mathrm{26}}{\mathrm{12}}>{t}>\mathrm{0}\:\:{accelaration}\:{is}\:−{ve}\: \\ $$$${so}\:{in}\:{time}\:{interval}\:\left[\mathrm{0},\frac{\mathrm{26}}{\mathrm{12}}\right]\:{vel}_{{max}} ={speed}_{{max}} =\mathrm{20} \\ $$$${in}\:{time}\:{interval}\:\:\left[\frac{\mathrm{26}}{\mathrm{12}},\mathrm{4}\right]\:\:{acc}\:{is}\:+{ve} \\ $$$$\frac{{ds}}{{dt}}=\mathrm{6}{t}^{\mathrm{2}} −\mathrm{26}{t}+\mathrm{20} \\ $$$$\mathrm{6}{t}^{\mathrm{2}} −\mathrm{26}{t}+\mathrm{20}=\mathrm{0} \\ $$$$\mathrm{3}{t}^{\mathrm{2}} −\mathrm{13}{t}+\mathrm{10}=\mathrm{0} \\ $$$$\mathrm{3}{t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{10}{t}+\mathrm{10}=\mathrm{0} \\ $$$$\mathrm{3}{t}\left({t}−\mathrm{1}\right)−\mathrm{10}\left({t}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({t}−\mathrm{1}\right)\left(\left(\mathrm{3}{t}−\mathrm{10}\right)=\mathrm{0}\right. \\ $$$${when}\:{t}=\mathrm{1}\:\:\:{velocity}=\mathrm{0} \\ $$$${when}\:{t}=\frac{\mathrm{10}}{\mathrm{3}}\:\:\:{velocity}=\mathrm{0} \\ $$$${so}\:{in}\:{time}\:{interval}\:\:\mathrm{4}>{t}>\mathrm{0} \\ $$$${max}\:{speed}\:{is}=\mathrm{20} \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{check}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Tawa1 last updated on 11/Apr/19
God bless you sir.  It should be right sir.  I will study your solution.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\:\mathrm{It}\:\mathrm{should}\:\mathrm{be}\:\mathrm{right}\:\mathrm{sir}.\:\:\mathrm{I}\:\mathrm{will}\:\mathrm{study}\:\mathrm{your}\:\mathrm{solution}. \\ $$
Commented by Tawa1 last updated on 11/Apr/19
God bless you sir. I appreciate your time.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Apr/19
3)a) when they meet x_p =x_Q   5t^2 (t+7)=t^3 (t+3)  t^2 (5t+35)−t^3 (t+3)=0  t^2 (5t+35−t^2 −3t)=0  when t=0 they meet at gas station  −t^2 +2t+35=0  t^2 −2t−35=0  t^2 −7t+5t−35=0  t(t−7)+5(t−7)=0  (t−7)(t+5)=0  t≠−5  so after t=7 they meet.  b)v_p =(dx_p /dt)=((d(5t^3 +35t^2 ))/dt)=15t^2 +70t  v_Q =((d(t^4 +3t^3 ))/dt) =4t^3 +9t^2   so velocity of p  w.r.t Q=v_p −v_Q      =(15t^2 +70t)−(4t^3 +9t^2 )     =6t^2 +70t−4t^3   c)v_p >v_Q    v_p −v_Q >0  (15t^2 +70t)−(4t^3 +9t^2 )>0  6t^2 +70t−4t^3 >0  t(4t^2 −6t−70)<0  2t(2t^2 −3t−35)<0  2t(2t^2 −10t+7t−35)<0  2t{2t(t−5)+7(t−5)}<0  2t(t−5)(2t+7)<0  t≠negetive  so[critical value of t =0,5  f(t)=2t(t−5)(2t+7)<0  when t>5  f(t)>0  so when t>0  but t<5  then f(t)<0  so in time interval   5>t>0  v_p >v_Q
$$\left.\mathrm{3}\left.\right){a}\right)\:{when}\:{they}\:{meet}\:{x}_{{p}} ={x}_{{Q}} \\ $$$$\mathrm{5}{t}^{\mathrm{2}} \left({t}+\mathrm{7}\right)={t}^{\mathrm{3}} \left({t}+\mathrm{3}\right) \\ $$$${t}^{\mathrm{2}} \left(\mathrm{5}{t}+\mathrm{35}\right)−{t}^{\mathrm{3}} \left({t}+\mathrm{3}\right)=\mathrm{0} \\ $$$${t}^{\mathrm{2}} \left(\mathrm{5}{t}+\mathrm{35}−{t}^{\mathrm{2}} −\mathrm{3}{t}\right)=\mathrm{0} \\ $$$${when}\:{t}=\mathrm{0}\:{they}\:{meet}\:{at}\:{gas}\:{station} \\ $$$$−{t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{35}=\mathrm{0} \\ $$$${t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{35}=\mathrm{0} \\ $$$${t}^{\mathrm{2}} −\mathrm{7}{t}+\mathrm{5}{t}−\mathrm{35}=\mathrm{0} \\ $$$${t}\left({t}−\mathrm{7}\right)+\mathrm{5}\left({t}−\mathrm{7}\right)=\mathrm{0} \\ $$$$\left({t}−\mathrm{7}\right)\left({t}+\mathrm{5}\right)=\mathrm{0} \\ $$$${t}\neq−\mathrm{5}\:\:{so}\:{after}\:{t}=\mathrm{7}\:{they}\:{meet}. \\ $$$$\left.{b}\right){v}_{{p}} =\frac{{dx}_{{p}} }{{dt}}=\frac{{d}\left(\mathrm{5}{t}^{\mathrm{3}} +\mathrm{35}{t}^{\mathrm{2}} \right)}{{dt}}=\mathrm{15}{t}^{\mathrm{2}} +\mathrm{70}{t} \\ $$$${v}_{{Q}} =\frac{{d}\left({t}^{\mathrm{4}} +\mathrm{3}{t}^{\mathrm{3}} \right)}{{dt}}\:=\mathrm{4}{t}^{\mathrm{3}} +\mathrm{9}{t}^{\mathrm{2}} \\ $$$${so}\:{velocity}\:{of}\:{p}\:\:{w}.{r}.{t}\:{Q}={v}_{{p}} −{v}_{{Q}} \\ $$$$\:\:\:=\left(\mathrm{15}{t}^{\mathrm{2}} +\mathrm{70}{t}\right)−\left(\mathrm{4}{t}^{\mathrm{3}} +\mathrm{9}{t}^{\mathrm{2}} \right) \\ $$$$\:\:\:=\mathrm{6}{t}^{\mathrm{2}} +\mathrm{70}{t}−\mathrm{4}{t}^{\mathrm{3}} \\ $$$$\left.{c}\right){v}_{{p}} >{v}_{{Q}} \:\:\:{v}_{{p}} −{v}_{{Q}} >\mathrm{0} \\ $$$$\left(\mathrm{15}{t}^{\mathrm{2}} +\mathrm{70}{t}\right)−\left(\mathrm{4}{t}^{\mathrm{3}} +\mathrm{9}{t}^{\mathrm{2}} \right)>\mathrm{0} \\ $$$$\mathrm{6}{t}^{\mathrm{2}} +\mathrm{70}{t}−\mathrm{4}{t}^{\mathrm{3}} >\mathrm{0} \\ $$$${t}\left(\mathrm{4}{t}^{\mathrm{2}} −\mathrm{6}{t}−\mathrm{70}\right)<\mathrm{0} \\ $$$$\mathrm{2}{t}\left(\mathrm{2}{t}^{\mathrm{2}} −\mathrm{3}{t}−\mathrm{35}\right)<\mathrm{0} \\ $$$$\mathrm{2}{t}\left(\mathrm{2}{t}^{\mathrm{2}} −\mathrm{10}{t}+\mathrm{7}{t}−\mathrm{35}\right)<\mathrm{0} \\ $$$$\mathrm{2}{t}\left\{\mathrm{2}{t}\left({t}−\mathrm{5}\right)+\mathrm{7}\left({t}−\mathrm{5}\right)\right\}<\mathrm{0} \\ $$$$\mathrm{2}{t}\left({t}−\mathrm{5}\right)\left(\mathrm{2}{t}+\mathrm{7}\right)<\mathrm{0} \\ $$$${t}\neq{negetive}\:\:{so}\left[{critical}\:{value}\:{of}\:{t}\:=\mathrm{0},\mathrm{5}\right. \\ $$$${f}\left({t}\right)=\mathrm{2}{t}\left({t}−\mathrm{5}\right)\left(\mathrm{2}{t}+\mathrm{7}\right)<\mathrm{0} \\ $$$${when}\:{t}>\mathrm{5}\:\:{f}\left({t}\right)>\mathrm{0} \\ $$$${so}\:{when}\:{t}>\mathrm{0}\:\:{but}\:{t}<\mathrm{5}\:\:{then}\:{f}\left({t}\right)<\mathrm{0} \\ $$$${so}\:{in}\:{time}\:{interval}\:\:\:\mathrm{5}>{t}>\mathrm{0} \\ $$$${v}_{{p}} >{v}_{{Q}} \\ $$
Commented by Tawa1 last updated on 11/Apr/19
Wow,  God bless you sir.  Thanks for your time sir.
$$\mathrm{Wow},\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}. \\ $$
Commented by peter frank last updated on 13/Apr/19
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *