Menu Close

Question-57735




Question Number 57735 by Tawa1 last updated on 10/Apr/19
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Apr/19
    s=2t^3 −13t^2 +20t  s=t(2t^2 −13t+20)  s=t(2t^2 −8t−5t+20)     =t{2t(t−4)−5(t−4)}      =t(t−4)(2t−5)  s=0  when t=0,t=4  and t=2.5   when t=4  s=0  that means in 4 seconds it cover same distance  twice but in opposite direction .hence displace  ment is zero.  S_(t=2) =2(2−4)(2×2−5)=2×−2×−1=4  so total distance covered in 4 seconds=2×4=8 meter    S=2t^3 −13t^2 +20t  (dS/dt)=6t^2 −26t+20     (d^2 s/dt^2 )=12t−26  given accelaration −ve  (d^2 s/dt^2 )<0  12t−26<0   →t<((26)/(12))  so in  time duration   ((13)/6)> t>0 acc is negetive  pls check is it correect answer..  then maximum speed to[be calculated  (ds/dt)=6t^2 −26t+20   when t=0    (ds/dt)=20  that means initial  velocity=20.    now (d^2 s/dt^2 )=12t−26  now in time interval   ((26)/(12))>t>0  accelaration is −ve   so in time interval [0,((26)/(12))] vel_(max) =speed_(max) =20  in time interval  [((26)/(12)),4]  acc is +ve  (ds/dt)=6t^2 −26t+20  6t^2 −26t+20=0  3t^2 −13t+10=0  3t^2 −3t−10t+10=0  3t(t−1)−10(t−1)=0  (t−1)((3t−10)=0  when t=1   velocity=0  when t=((10)/3)   velocity=0  so in time interval  4>t>0  max speed is=20  pls check
s=2t313t2+20ts=t(2t213t+20)s=t(2t28t5t+20)=t{2t(t4)5(t4)}=t(t4)(2t5)s=0whent=0,t=4andt=2.5whent=4s=0thatmeansin4secondsitcoversamedistancetwicebutinoppositedirection.hencedisplacementiszero.St=2=2(24)(2×25)=2×2×1=4sototaldistancecoveredin4seconds=2×4=8meterS=2t313t2+20tdSdt=6t226t+20d2sdt2=12t26givenaccelarationved2sdt2<012t26<0t<2612sointimeduration136>t>0accisnegetiveplscheckisitcorreectanswer..thenmaximumspeedto[becalculateddsdt=6t226t+20whent=0dsdt=20thatmeansinitialvelocity=20.nowd2sdt2=12t26nowintimeinterval2612>t>0accelarationisvesointimeinterval[0,2612]velmax=speedmax=20intimeinterval[2612,4]accis+vedsdt=6t226t+206t226t+20=03t213t+10=03t23t10t+10=03t(t1)10(t1)=0(t1)((3t10)=0whent=1velocity=0whent=103velocity=0sointimeinterval4>t>0maxspeedis=20plscheck
Commented by Tawa1 last updated on 11/Apr/19
God bless you sir.  It should be right sir.  I will study your solution.
Godblessyousir.Itshouldberightsir.Iwillstudyyoursolution.
Commented by Tawa1 last updated on 11/Apr/19
God bless you sir. I appreciate your time.
Godblessyousir.Iappreciateyourtime.
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Apr/19
3)a) when they meet x_p =x_Q   5t^2 (t+7)=t^3 (t+3)  t^2 (5t+35)−t^3 (t+3)=0  t^2 (5t+35−t^2 −3t)=0  when t=0 they meet at gas station  −t^2 +2t+35=0  t^2 −2t−35=0  t^2 −7t+5t−35=0  t(t−7)+5(t−7)=0  (t−7)(t+5)=0  t≠−5  so after t=7 they meet.  b)v_p =(dx_p /dt)=((d(5t^3 +35t^2 ))/dt)=15t^2 +70t  v_Q =((d(t^4 +3t^3 ))/dt) =4t^3 +9t^2   so velocity of p  w.r.t Q=v_p −v_Q      =(15t^2 +70t)−(4t^3 +9t^2 )     =6t^2 +70t−4t^3   c)v_p >v_Q    v_p −v_Q >0  (15t^2 +70t)−(4t^3 +9t^2 )>0  6t^2 +70t−4t^3 >0  t(4t^2 −6t−70)<0  2t(2t^2 −3t−35)<0  2t(2t^2 −10t+7t−35)<0  2t{2t(t−5)+7(t−5)}<0  2t(t−5)(2t+7)<0  t≠negetive  so[critical value of t =0,5  f(t)=2t(t−5)(2t+7)<0  when t>5  f(t)>0  so when t>0  but t<5  then f(t)<0  so in time interval   5>t>0  v_p >v_Q
3)a)whentheymeetxp=xQ5t2(t+7)=t3(t+3)t2(5t+35)t3(t+3)=0t2(5t+35t23t)=0whent=0theymeetatgasstationt2+2t+35=0t22t35=0t27t+5t35=0t(t7)+5(t7)=0(t7)(t+5)=0t5soaftert=7theymeet.b)vp=dxpdt=d(5t3+35t2)dt=15t2+70tvQ=d(t4+3t3)dt=4t3+9t2sovelocityofpw.r.tQ=vpvQ=(15t2+70t)(4t3+9t2)=6t2+70t4t3c)vp>vQvpvQ>0(15t2+70t)(4t3+9t2)>06t2+70t4t3>0t(4t26t70)<02t(2t23t35)<02t(2t210t+7t35)<02t{2t(t5)+7(t5)}<02t(t5)(2t+7)<0tnegetiveso[criticalvalueoft=0,5f(t)=2t(t5)(2t+7)<0whent>5f(t)>0sowhent>0butt<5thenf(t)<0sointimeinterval5>t>0vp>vQ
Commented by Tawa1 last updated on 11/Apr/19
Wow,  God bless you sir.  Thanks for your time sir.
Wow,Godblessyousir.Thanksforyourtimesir.Wow,Godblessyousir.Thanksforyourtimesir.
Commented by peter frank last updated on 13/Apr/19
thank you
thankyouthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *