Menu Close

Question-57770




Question Number 57770 by Tawa1 last updated on 11/Apr/19
Answered by Kunal12588 last updated on 11/Apr/19
Σ_(k=1) ^(13) (1/(sin((π/4)+(((k−1)π)/6))sin((π/4)+((kπ)/6))))  sin((π/4)+(((k−1)π)/6))sin((π/4)+((kπ)/6))  =sin(((3π+2(k−1)π)/(12)))sin(((3π+2kπ)/(12)))  =sin((((2k+1)π)/(12)))sin((((2k+3)π)/(12)))  =(1/2){cos((((2k+3)π−(2k+1)π)/(12)))−cos((((2k+3)π+(2k+1)π)/(12)))}  =(1/2){cos(((2π)/(12)))−cos(((4k+4)π)/(12))}  =(1/2){cos(π/6)−cos((k+1)/3)π}  =(1/2){((√3)/2)−cos((k+1)/3)π}  k=1,2,3,4,5,6,7,8,9,10,11,12,13  ((k+1)/3)=(2/3),1,1(1/3),1(2/3),2,2(1/3),2(2/3),3,3(1/3),3(2/3),4,4(1/3),4(2/3)  cos((k+1)/3)π=c_(120°) ,c_(180) ,c_(240) ,c_(300) ,c_(360) ,c_(60) ,c_(120) ,...  =−(1/2),−1,−(1/2),(1/2),1,(1/2),−(1/2),...  Σ_(k=1) ^(13) (1/(sin((π/4)+(((k−1)π)/6))sin((π/4)+((kπ)/6))))  =2((4/( (√3)+1))+(4/( (√3)+2))+(4/( (√3)+1))+(4/( (√3)−1))+(4/( (√3)−2))+(4/( (√3)−1)))+(4/( (√3)+1))  =8((((√3)−1)/2)+(((√3)−2)/(−1))+(((√3)−1)/2)+(((√3)+1)/2)+(((√3)+2)/(−1))+(((√3)+1)/2))+((4((√3)−1))/2)  =4((√3)−1−2(√3)+4+(√3)−1+(√3)+1−2(√3)−4+(√3)+1)+2((√3)−1)  =4(0)+2((√3)−1)  =2((√3)−1)  Ans: C
13k=11sin(π4+(k1)π6)sin(π4+kπ6)sin(π4+(k1)π6)sin(π4+kπ6)=sin(3π+2(k1)π12)sin(3π+2kπ12)=sin((2k+1)π12)sin((2k+3)π12)=12{cos((2k+3)π(2k+1)π12)cos((2k+3)π+(2k+1)π12)}=12{cos(2π12)cos(4k+4)π12}=12{cosπ6cosk+13π}=12{32cosk+13π}k=1,2,3,4,5,6,7,8,9,10,11,12,13k+13=23,1,113,123,2,213,223,3,313,323,4,413,423cosk+13π=c120°,c180,c240,c300,c360,c60,c120,=12,1,12,12,1,12,12,13k=11sin(π4+(k1)π6)sin(π4+kπ6)=2(43+1+43+2+43+1+431+432+431)+43+1=8(312+321+312+3+12+3+21+3+12)+4(31)2=4(3123+4+31+3+1234+3+1)+2(31)=4(0)+2(31)=2(31)Ans:C
Commented by Tawa1 last updated on 11/Apr/19
God bless you sir.
Godblessyousir.
Commented by abbas-alsadi last updated on 12/Apr/19

Leave a Reply

Your email address will not be published. Required fields are marked *