Question-57770 Tinku Tara June 4, 2023 Arithmetic 0 Comments FacebookTweetPin Question Number 57770 by Tawa1 last updated on 11/Apr/19 Answered by Kunal12588 last updated on 11/Apr/19 ∑13k=11sin(π4+(k−1)π6)sin(π4+kπ6)sin(π4+(k−1)π6)sin(π4+kπ6)=sin(3π+2(k−1)π12)sin(3π+2kπ12)=sin((2k+1)π12)sin((2k+3)π12)=12{cos((2k+3)π−(2k+1)π12)−cos((2k+3)π+(2k+1)π12)}=12{cos(2π12)−cos(4k+4)π12}=12{cosπ6−cosk+13π}=12{32−cosk+13π}k=1,2,3,4,5,6,7,8,9,10,11,12,13k+13=23,1,113,123,2,213,223,3,313,323,4,413,423cosk+13π=c120°,c180,c240,c300,c360,c60,c120,…=−12,−1,−12,12,1,12,−12,…∑13k=11sin(π4+(k−1)π6)sin(π4+kπ6)=2(43+1+43+2+43+1+43−1+43−2+43−1)+43+1=8(3−12+3−2−1+3−12+3+12+3+2−1+3+12)+4(3−1)2=4(3−1−23+4+3−1+3+1−23−4+3+1)+2(3−1)=4(0)+2(3−1)=2(3−1)Ans:C Commented by Tawa1 last updated on 11/Apr/19 Godblessyousir. Commented by abbas-alsadi last updated on 12/Apr/19 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: gcd-a-b-lcm-a-b-111-find-a-and-b-Next Next post: 2x-3-3x-2-4x-7-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.