Menu Close

Question-58696




Question Number 58696 by ajfour last updated on 27/Apr/19
Commented by ajfour last updated on 27/Apr/19
∠AOB=90° and ABCD is a square.  If DGF ⊥ OB, find θ.
$$\angle\mathrm{AOB}=\mathrm{90}°\:\mathrm{and}\:\mathrm{ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{square}. \\ $$$$\mathrm{If}\:\mathrm{DGF}\:\bot\:\mathrm{OB},\:\mathrm{find}\:\theta. \\ $$
Commented by ajfour last updated on 28/Apr/19
?
$$? \\ $$
Commented by mr W last updated on 28/Apr/19
I think it is not possible, i.e. θ=0.
$${I}\:{think}\:{it}\:{is}\:{not}\:{possible},\:{i}.{e}.\:\theta=\mathrm{0}. \\ $$
Answered by mr W last updated on 29/Apr/19
GB=a−AG=a−a tan θ=a(1−tan θ)  tan ∠BGC=(a/(a(1−tan θ)))=(1/(1−tan θ))  tan ∠GOF=((GB sin θ)/(a sin θ))=1−tan θ  ∠AGO=∠GOF+θ  tan ∠AGO=tan (∠GOF+θ)=((tan ∠GOF+tan θ)/(1−tan ∠GOF tan θ))  =((1−tan θ+tan θ)/(1−(1−tan θ) tan θ))=(1/(1−tan θ+tan^2  θ))  i.e. tan ∠BGC≠tan ∠AGO  ⇒∠BGC≠∠AGO  ⇒AB, CO and DF don′t intersect on  the same point G.
$${GB}={a}−{AG}={a}−{a}\:\mathrm{tan}\:\theta={a}\left(\mathrm{1}−\mathrm{tan}\:\theta\right) \\ $$$$\mathrm{tan}\:\angle{BGC}=\frac{{a}}{{a}\left(\mathrm{1}−\mathrm{tan}\:\theta\right)}=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{tan}\:\theta} \\ $$$$\mathrm{tan}\:\angle{GOF}=\frac{{GB}\:\mathrm{sin}\:\theta}{{a}\:\mathrm{sin}\:\theta}=\mathrm{1}−\mathrm{tan}\:\theta \\ $$$$\angle{AGO}=\angle{GOF}+\theta \\ $$$$\mathrm{tan}\:\angle{AGO}=\mathrm{tan}\:\left(\angle{GOF}+\theta\right)=\frac{\mathrm{tan}\:\angle{GOF}+\mathrm{tan}\:\theta}{\mathrm{1}−\mathrm{tan}\:\angle{GOF}\:\mathrm{tan}\:\theta} \\ $$$$=\frac{\mathrm{1}−\mathrm{tan}\:\theta+\mathrm{tan}\:\theta}{\mathrm{1}−\left(\mathrm{1}−\mathrm{tan}\:\theta\right)\:\mathrm{tan}\:\theta}=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{tan}\:\theta+\mathrm{tan}^{\mathrm{2}} \:\theta} \\ $$$${i}.{e}.\:\mathrm{tan}\:\angle{BGC}\neq\mathrm{tan}\:\angle{AGO} \\ $$$$\Rightarrow\angle{BGC}\neq\angle{AGO} \\ $$$$\Rightarrow{AB},\:{CO}\:{and}\:{DF}\:{don}'{t}\:{intersect}\:{on} \\ $$$${the}\:{same}\:{point}\:{G}. \\ $$
Commented by ajfour last updated on 01/May/19
its alright sir, i was playing blind..  sorry!
$$\mathrm{its}\:\mathrm{alright}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{was}\:\mathrm{playing}\:\mathrm{blind}.. \\ $$$$\mathrm{sorry}! \\ $$
Commented by mr W last updated on 01/May/19
no reason to be sorry sir!  you have created super questions.
$${no}\:{reason}\:{to}\:{be}\:{sorry}\:{sir}! \\ $$$${you}\:{have}\:{created}\:{super}\:{questions}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *