Menu Close

Question-59012




Question Number 59012 by cesar.marval.larez@gmail.com last updated on 03/May/19
Answered by tanmay last updated on 03/May/19
182)∫((2x−7)/(x^2 +9))dx  ∫((d(x^2 +9))/(x^2 +9))−7∫(dx/(x^2 +3^2 ))  ln(x^2 +9)−7×(1/3)tan^(−1) ((x/3))+c
$$\left.\mathrm{182}\right)\int\frac{\mathrm{2}{x}−\mathrm{7}}{{x}^{\mathrm{2}} +\mathrm{9}}{dx} \\ $$$$\int\frac{{d}\left({x}^{\mathrm{2}} +\mathrm{9}\right)}{{x}^{\mathrm{2}} +\mathrm{9}}−\mathrm{7}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} } \\ $$$${ln}\left({x}^{\mathrm{2}} +\mathrm{9}\right)−\mathrm{7}×\frac{\mathrm{1}}{\mathrm{3}}{tan}^{−\mathrm{1}} \left(\frac{{x}}{\mathrm{3}}\right)+{c} \\ $$
Answered by tanmay last updated on 03/May/19
183)∫((x+3)/( (√(1−x^2 ))))dx  ∫(x/( (√(1−x^2 ))))dx+3∫(dx/( (√(1−x^2 ))))  x=sina    dx=cosada  ∫((sina)/(cosa))×cosada+3∫((cosada)/(cosa))  ∫sinada+3∫da  =−cosa+3a+c  =−(√(1−x^2 )) +3sin^(−1) (x)+c
$$\left.\mathrm{183}\right)\int\frac{{x}+\mathrm{3}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$$\int\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx}+\mathrm{3}\int\frac{{dx}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \\ $$$${x}={sina}\:\:\:\:{dx}={cosada} \\ $$$$\int\frac{{sina}}{{cosa}}×{cosada}+\mathrm{3}\int\frac{{cosada}}{{cosa}} \\ $$$$\int{sinada}+\mathrm{3}\int{da} \\ $$$$=−{cosa}+\mathrm{3}{a}+{c} \\ $$$$=−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:+\mathrm{3}{sin}^{−\mathrm{1}} \left({x}\right)+{c} \\ $$$$ \\ $$$$ \\ $$
Answered by tanmay last updated on 03/May/19
∫((4x+5)/(4x^2 +1))dx  (1/2)∫((d(4x^2 +1))/(4x^2 +1))+∫((5dx)/(4x^2 +1))  (1/2)∫((d(4x^2 +1))/(4x^2 +1))+(5/4)∫(dx/(x^2 +((1/2))^2 ))  (1/2)ln(4x^2 +1)+(5/4)×(1/(1/2))tan^(−1) ((x/(1/2)))+c  (1/2)ln(4x^2 +1)+(5/2)tan^(−1) (2x)+c
$$\int\frac{\mathrm{4}{x}+\mathrm{5}}{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}+\int\frac{\mathrm{5}{dx}}{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)}{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{5}}{\mathrm{4}}\int\frac{{dx}}{{x}^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)+\frac{\mathrm{5}}{\mathrm{4}}×\frac{\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{x}}{\frac{\mathrm{1}}{\mathrm{2}}}\right)+{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}\right)+\frac{\mathrm{5}}{\mathrm{2}}{tan}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *