Question Number 59070 by Tawa1 last updated on 04/May/19
Answered by tanmay last updated on 04/May/19
$$\left.\mathrm{14}\right){f}\left({x}\right)={q}\left({x}\right)\left({x}−\alpha\right) \\ $$$${x}−\alpha\:{is}\:{factor}\:{of}\:{f}\left({x}\right)\:{if}\:{f}\left(\alpha\right)=\mathrm{0} \\ $$$${abc}−\left({a}+{b}+{c}\right)\left({bc}+{ca}+{ab}\right)\leftarrow{put}\:{a}=−{b}\:{here} \\ $$$$\left(−{b}\right)\left({b}\right){c}−\left(−{b}+{b}+{c}\right)\left({bc}+{c}×−{b}+{b}×−{b}\right) \\ $$$$−{b}^{\mathrm{2}} {c}−{c}\left({bc}−{bc}−{b}^{\mathrm{2}} \right) \\ $$$$=−{b}^{\mathrm{2}} {c}−{bc}^{\mathrm{2}} +{bc}^{\mathrm{2}} +{b}^{\mathrm{2}} {c} \\ $$$$=\mathrm{0} \\ $$$${so}\left[\left({a}+{b}\right)\:{is}\:{a}\:{facor}\:\right. \\ $$$${abc}−\left({a}+{b}+{c}\right)\left({bc}+{ca}+{ab}\right) \\ $$$$={abc}−{abc}−{a}\left({ca}+{ab}\right)−{b}\left({bc}+{ca}+{ab}\right)−{c}\left({bc}+{ca}+{ab}\right) \\ $$$$=−{a}^{\mathrm{2}} \left({b}+{c}\right)−{b}^{\mathrm{2}} {c}−{abc}−{ab}^{\mathrm{2}} −{bc}^{\mathrm{2}} −{c}^{\mathrm{2}} {a}−{abc} \\ $$$$=\left(−\right)\left[{a}^{\mathrm{2}} {b}+{a}^{\mathrm{2}} {c}+{b}^{\mathrm{2}} {c}+{bc}^{\mathrm{2}} +\mathrm{2}{abc}+{ab}^{\mathrm{2}} +{ac}^{\mathrm{2}} \right] \\ $$$$=\left(−\mathrm{1}\right)\left[{a}^{\mathrm{2}} \left({b}+{c}\right)+{bc}\left({b}+{c}\right)+{a}\left({b}+{c}\right)^{\mathrm{2}} \right] \\ $$$$=\left(−{b}−{c}\right)\left[{a}^{\mathrm{2}} +{bc}+{ab}+{ac}\right] \\ $$$$\left.=\left(−\mathrm{1}\right)\left({b}+{c}\right)\left[{a}\left({a}+{b}\right)\right)+{c}\left({a}+{b}\right)\right] \\ $$$$=\left(−\mathrm{1}\right)\left({b}+{c}\right)\left({a}+{b}\right)\left({a}+{c}\right) \\ $$
Commented by Tawa1 last updated on 04/May/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by tanmay last updated on 04/May/19
$${f}\left({x}\right)={px}^{\mathrm{4}} +{qx}^{\mathrm{3}} +\mathrm{13}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{4}=\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)={p}+{q}+\mathrm{13}+\mathrm{4}−\mathrm{4}=\mathrm{0}\rightarrow{p}+{q}=−\mathrm{13} \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{{p}}{\mathrm{16}}+\frac{{q}}{\mathrm{8}}+\frac{\mathrm{13}}{\mathrm{4}}+\frac{\mathrm{4}}{\mathrm{2}}−\mathrm{4}=\mathrm{0} \\ $$$${p}+\mathrm{2}{q}+\mathrm{52}−\mathrm{32}=\mathrm{0} \\ $$$${p}+\mathrm{2}{q}+\mathrm{20}=\mathrm{0} \\ $$$${p}+{q}+\mathrm{13}=\mathrm{0} \\ $$$${q}+\mathrm{7}=\mathrm{0}\rightarrow{q}=−\mathrm{7} \\ $$$${p}−\mathrm{7}+\mathrm{13}=\mathrm{0}\:\:{p}=−\mathrm{6} \\ $$
Commented by Tawa1 last updated on 04/May/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by tanmay last updated on 04/May/19
$${px}^{\mathrm{4}} +{qx}^{\mathrm{3}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{6}={q}\left({x}\right)\left({x}^{\mathrm{2}} −\mathrm{1}\right)+\mathrm{2}{x}+\mathrm{1} \\ $$$${so} \\ $$$${px}^{\mathrm{4}} +{qx}^{\mathrm{3}} −\mathrm{8}{x}^{\mathrm{2}} +\mathrm{6}−\mathrm{2}{x}−\mathrm{1}\:\:{is}\:{divisible}\:{by}\:\left({x}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$${f}\left({x}\right)={px}^{\mathrm{4}} +{qx}^{\mathrm{3}} −\mathrm{8}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5} \\ $$$${f}\left(\mathrm{1}\right)={p}+{q}−\mathrm{8}−\mathrm{2}+\mathrm{5}=\mathrm{0} \\ $$$${p}+{q}−\mathrm{5}=\mathrm{0} \\ $$$${f}\left(\mathrm{1}−\right)={p}−{q}−\mathrm{8}+\mathrm{2}+\mathrm{5}=\mathrm{0} \\ $$$${p}−{q}−\mathrm{1}=\mathrm{0} \\ $$$${p}+{q}−\mathrm{5}=\mathrm{0} \\ $$$${p}−{q}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{2}{p}−\mathrm{6}=\mathrm{0}\rightarrow{p}=\mathrm{3} \\ $$$$\mathrm{3}+{q}−\mathrm{5}=\mathrm{0} \\ $$$${q}=\mathrm{2} \\ $$$${p}=\mathrm{3}\:\:\:{and}\:\:{q}=\mathrm{2} \\ $$
Commented by Tawa1 last updated on 04/May/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time} \\ $$