Menu Close

Question-59121




Question Number 59121 by naka3546 last updated on 05/May/19
Answered by mr W last updated on 05/May/19
cirvle 1:   r_1 =1  a_1 =square side length  a_1 ^2 +((a_1 /2))^2 =r_1 ^2   ⇒a_1 =(2/( (√3)))r_1 =((2(√3))/3)r_1   s_1 =length of red path  s_1 =3a_1 +r_1 −(a_1 /2)=(2(√3)+1−((√3)/3))r_1 =(((5(√3))/3)+1)r_1 =kr_1   with k=((5(√3))/3)+1≈3.887  circle 2:  r_2 =(a_1 /2)=((√3)/3)r_1   s_2 =kr_2 =((√3)/3)kr_1 =qs_1   with q=((√3)/3)<1  total length of red path =S  S=s_1 +s_2 +...+s_n +...   ←G.P.  =(s_1 /(1−q))=((kr_1 )/(1−((√3)/3)))=(3/(3−(√3)))×((5(√3)+3)/3)×1  =(((5(√3)+3)(3+(√3)))/6)  =4+3(√3)
$${cirvle}\:\mathrm{1}:\: \\ $$$${r}_{\mathrm{1}} =\mathrm{1} \\ $$$${a}_{\mathrm{1}} ={square}\:{side}\:{length} \\ $$$${a}_{\mathrm{1}} ^{\mathrm{2}} +\left(\frac{{a}_{\mathrm{1}} }{\mathrm{2}}\right)^{\mathrm{2}} ={r}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\Rightarrow{a}_{\mathrm{1}} =\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}{r}_{\mathrm{1}} =\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}{r}_{\mathrm{1}} \\ $$$${s}_{\mathrm{1}} ={length}\:{of}\:{red}\:{path} \\ $$$${s}_{\mathrm{1}} =\mathrm{3}{a}_{\mathrm{1}} +{r}_{\mathrm{1}} −\frac{{a}_{\mathrm{1}} }{\mathrm{2}}=\left(\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{1}−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\right){r}_{\mathrm{1}} =\left(\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{3}}+\mathrm{1}\right){r}_{\mathrm{1}} ={kr}_{\mathrm{1}} \\ $$$${with}\:{k}=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{3}}+\mathrm{1}\approx\mathrm{3}.\mathrm{887} \\ $$$${circle}\:\mathrm{2}: \\ $$$${r}_{\mathrm{2}} =\frac{{a}_{\mathrm{1}} }{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}{r}_{\mathrm{1}} \\ $$$${s}_{\mathrm{2}} ={kr}_{\mathrm{2}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}{kr}_{\mathrm{1}} ={qs}_{\mathrm{1}} \\ $$$${with}\:{q}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}<\mathrm{1} \\ $$$${total}\:{length}\:{of}\:{red}\:{path}\:={S} \\ $$$${S}={s}_{\mathrm{1}} +{s}_{\mathrm{2}} +…+{s}_{{n}} +…\:\:\:\leftarrow{G}.{P}. \\ $$$$=\frac{{s}_{\mathrm{1}} }{\mathrm{1}−{q}}=\frac{{kr}_{\mathrm{1}} }{\mathrm{1}−\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}}=\frac{\mathrm{3}}{\mathrm{3}−\sqrt{\mathrm{3}}}×\frac{\mathrm{5}\sqrt{\mathrm{3}}+\mathrm{3}}{\mathrm{3}}×\mathrm{1} \\ $$$$=\frac{\left(\mathrm{5}\sqrt{\mathrm{3}}+\mathrm{3}\right)\left(\mathrm{3}+\sqrt{\mathrm{3}}\right)}{\mathrm{6}} \\ $$$$=\mathrm{4}+\mathrm{3}\sqrt{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *