Question Number 59225 by azizullah last updated on 06/May/19
Commented by malwaan last updated on 06/May/19
$${Whats}\:{the}\:{first}\:{term}\:? \\ $$$${x}^{\mathrm{4}} \:{or}\:\:{x}^{\mathrm{2}} \:? \\ $$
Commented by azizullah last updated on 06/May/19
$$\boldsymbol{\mathrm{dear}}\:\boldsymbol{\mathrm{sir}}\:\boldsymbol{\mathrm{there}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{mistake}}\:\boldsymbol{\mathrm{it}}\:\boldsymbol{\mathrm{taken}}\:\boldsymbol{\mathrm{from}}\:\boldsymbol{\mathrm{book}}\:\boldsymbol{\mathrm{but}}\:\boldsymbol{\mathrm{i}}\:\boldsymbol{\mathrm{think}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{term}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{x}}^{\mathrm{4}} \\ $$
Commented by MJS last updated on 06/May/19
$$\mathrm{no}\:\mathrm{easy}\:\mathrm{solution}\:\mathrm{in}\:\mathrm{both}\:\mathrm{cases} \\ $$
Answered by malwaan last updated on 06/May/19
$$\left({x}^{\mathrm{4}} −{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)/\left({x}−\mathrm{1}\right) \\ $$$$\:={x}^{\mathrm{3}} −\mathrm{2}{x}−\mathrm{1} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{2}{x}−\mathrm{1}\right)/\left({x}+\mathrm{1}\right)= \\ $$$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${The}\:{solution}\:{set}= \\ $$$$\left\{\mathrm{1}\:;\:−\mathrm{1}\:;\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:;\:\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\:\right\} \\ $$
Commented by MJS last updated on 06/May/19
$$\mathrm{but}\:\mathrm{it}'\mathrm{s}\:{x}^{\mathrm{2}\vee\mathrm{4}} −{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}=\mathrm{0} \\ $$
Commented by malwaan last updated on 07/May/19
$${yes}\:{you}\:{are}\:{right} \\ $$$${I}\:{am}\:{sorry} \\ $$
Commented by azizullah last updated on 07/May/19
$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{Now}}\:\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{x}}+\mathrm{1}=\:\mathrm{0} \\ $$
Commented by MJS last updated on 07/May/19
$${x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)+\left(−\mathrm{2}{x}^{\mathrm{3}} +\mathrm{2}{x}\right)=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left(\left({x}^{\mathrm{2}} −\mathrm{1}\right)−\mathrm{2}{x}\right)=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{x}_{\mathrm{1},\:\mathrm{2}} =\pm\mathrm{1} \\ $$$$\:\:\:\:\:\:{x}_{\mathrm{3},\:\mathrm{4}} =\mathrm{1}\pm\sqrt{\mathrm{2}} \\ $$
Commented by azizullah last updated on 07/May/19
$$\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{thanks}}\:\boldsymbol{\mathrm{so}}\:\boldsymbol{\mathrm{much}}\:\boldsymbol{\mathrm{answer}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{correct}} \\ $$
Commented by malwaan last updated on 09/May/19
$$\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\right)/\left({x}−\mathrm{1}\right) \\ $$$$={x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1} \\ $$$$\left({x}^{\mathrm{3}} −{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{1}\right)/\left({x}+\mathrm{1}\right) \\ $$$$={x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1} \\ $$$$\Rightarrow{x}=\frac{+\mathrm{2}\pm\sqrt{\mathrm{4}+\mathrm{4}}}{\mathrm{2}}=\mathrm{1}\pm\sqrt{\mathrm{2}} \\ $$$$\therefore{x}_{\mathrm{1}} =\mathrm{1}\:;\:\:{x}_{\mathrm{2}} =−\mathrm{1} \\ $$$${x}_{\mathrm{3}} =\mathrm{1}+\sqrt{\mathrm{2}}\:\:;\:\:{x}_{\mathrm{4}} =\mathrm{1}−\sqrt{\mathrm{2}} \\ $$