Question Number 59301 by ajfour last updated on 07/May/19
Commented by ajfour last updated on 07/May/19
$$\mathrm{If}\:\mathrm{deceleration}\:\mathrm{of}\:\mathrm{bullet}\:\mathrm{through} \\ $$$$\:\mathrm{wall}\:\mathrm{be}\:\alpha,\:\mathrm{find}\:\mathrm{y}\left(<\mathrm{h}\right)\:\mathrm{for}\:\mathrm{maximum}\:\mathrm{x}. \\ $$$$… \\ $$
Commented by tanmay last updated on 07/May/19
Commented by tanmay last updated on 07/May/19
$${v}^{\mathrm{2}} ={u}^{\mathrm{2}} −\mathrm{2}\alpha\left({a}+\mathrm{2}{b}\right) \\ $$$${tan}\mathrm{30}^{{o}} =\frac{{b}}{{y}} \\ $$$${b}=\frac{{y}}{\:\sqrt{\mathrm{3}}} \\ $$$${v}^{\mathrm{2}} ={u}^{\mathrm{2}} −\mathrm{2}\alpha\left({a}+\frac{\mathrm{2}{y}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}{gt}^{\mathrm{2}} \\ $$$${x}={vt} \\ $$$${x}={v}×\sqrt{\frac{\mathrm{2}{y}}{{g}}}\: \\ $$$${x}=\left[{u}^{\mathrm{2}} −\mathrm{2}\alpha\left({a}+\frac{\mathrm{2}{y}}{\:\sqrt{\mathrm{3}}}\right)\right]^{\frac{\mathrm{1}}{\mathrm{2}}} ×\sqrt{\frac{\mathrm{2}{y}}{{g}}}\: \\ $$$${x}^{\mathrm{2}} =\left[{u}^{\mathrm{2}} −\mathrm{2}\alpha\left({a}+\frac{\mathrm{2}{y}}{\:\sqrt{\mathrm{3}}}\right)\right]×\frac{\mathrm{2}{y}}{{g}} \\ $$$${x}^{\mathrm{2}} =\left({u}^{\mathrm{2}} −\mathrm{2}\alpha\right)×\frac{\mathrm{2}{y}}{{g}}−\frac{\mathrm{4}\alpha{y}}{\:\sqrt{\mathrm{3}}}×\frac{\mathrm{2}{y}}{{g}} \\ $$$${x}^{\mathrm{2}} ={Ay}−{By}^{\mathrm{2}} \\ $$$$\frac{{x}^{\mathrm{2}} }{{B}}=\frac{{A}}{{B}}{y}−{y}^{\mathrm{2}} \\ $$$$\frac{{x}^{\mathrm{2}} }{{B}}=−\left({y}^{\mathrm{2}} −\mathrm{2}×{y}×\frac{{A}}{\mathrm{2}{B}}+\frac{{A}^{\mathrm{2}} }{\mathrm{4}{B}^{\mathrm{2}} }−\frac{{A}^{\mathrm{2}} }{\mathrm{4}{B}^{\mathrm{2}} }\right) \\ $$$$\frac{{x}^{\mathrm{2}} }{{B}}=\frac{{A}^{\mathrm{2}} }{\mathrm{4}{B}^{\mathrm{2}} }−\left({y}−\frac{{A}}{\mathrm{2}{B}}\right)^{\mathrm{2}} \\ $$$${x}_{{max}} =\frac{{A}^{\mathrm{2}} }{\mathrm{4}{B}}=\frac{\left[\frac{\mathrm{2}}{{g}}\left({u}^{\mathrm{2}} −\mathrm{2}\alpha\right)\right]^{\mathrm{2}} }{\mathrm{4}×\frac{\mathrm{8}\alpha}{\:\sqrt{\mathrm{3}}\:{g}}\:} \\ $$$${x}_{{max}} =\frac{\mathrm{4}}{{g}^{\mathrm{2}} }×\frac{\left({u}^{\mathrm{2}} −\mathrm{2}\alpha\right)^{\mathrm{2}} }{\mathrm{32}\alpha}×\sqrt{\mathrm{3}}\:{g} \\ $$$${x}_{{max}} =\frac{\sqrt{\mathrm{3}}\:\left({u}^{\mathrm{2}} −\mathrm{2}\alpha\right)^{\mathrm{2}} }{\mathrm{8}{g}×\alpha} \\ $$$${when}\:{y}=\frac{{A}}{\mathrm{2}{B}}=\frac{\frac{\mathrm{2}}{{g}}\left({u}^{\mathrm{2}} −\mathrm{2}\alpha\right)}{\frac{\mathrm{8}\alpha}{\:\sqrt{\mathrm{3}}\:{g}}}=\frac{\mathrm{2}\left({u}^{\mathrm{2}} −\mathrm{2}\alpha\right)×\sqrt{\mathrm{3}}\:}{\mathrm{8}\alpha} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by ajfour last updated on 08/May/19
$$\mathrm{let}\:\mathrm{me}\:\mathrm{sometime},\:\mathrm{thanks}\:\mathrm{Sir}. \\ $$
Answered by mr W last updated on 08/May/19
$${s}={path}\:{length}\:{in}\:{wall} \\ $$$${v}={outgoing}\:{velocity} \\ $$$${s}={ut}_{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\alpha{t}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$${v}={u}−\alpha{t}_{\mathrm{1}} \\ $$$${v}^{\mathrm{2}} ={u}^{\mathrm{2}} −\mathrm{2}\alpha{ut}_{\mathrm{1}} +\alpha^{\mathrm{2}} {ut}_{\mathrm{1}} ^{\mathrm{2}} ={u}^{\mathrm{2}} −\mathrm{2}\alpha\left({ut}_{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\alpha{t}_{\mathrm{1}} ^{\mathrm{2}} \right) \\ $$$${v}^{\mathrm{2}} ={u}^{\mathrm{2}} −\mathrm{2}\alpha{s} \\ $$$${v}=\sqrt{{u}^{\mathrm{2}} −\mathrm{2}\alpha{s}} \\ $$$${s}={a}+\frac{\mathrm{2}{y}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{v}=\sqrt{{u}^{\mathrm{2}} −\mathrm{2}\alpha\left({a}+\frac{\mathrm{2}{y}}{\:\sqrt{\mathrm{3}}}\right)}=\sqrt{{u}^{\mathrm{2}} −\mathrm{2}\alpha{a}−\frac{\mathrm{4}\alpha{y}}{\:\sqrt{\mathrm{3}}}} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}{gt}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$${x}=\frac{{y}}{\:\sqrt{\mathrm{3}}}+{vt}_{\mathrm{2}} =\frac{{y}}{\:\sqrt{\mathrm{3}}}+{v}\sqrt{\frac{\mathrm{2}{y}}{{g}}} \\ $$$$\Rightarrow{x}=\frac{{y}}{\:\sqrt{\mathrm{3}}}+\sqrt{\frac{\mathrm{2}{y}}{{g}}\left({u}^{\mathrm{2}} −\mathrm{2}\alpha{a}−\frac{\mathrm{4}\alpha{y}}{\:\sqrt{\mathrm{3}}}\right)} \\ $$$${let}\:\lambda=\frac{{y}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{x}=\lambda+\sqrt{\frac{\mathrm{8}\alpha\sqrt{\mathrm{3}}}{{g}}\left(\frac{{u}^{\mathrm{2}} −\mathrm{2}\alpha{a}}{\mathrm{4}\alpha}−\lambda\right)\lambda} \\ $$$$\Rightarrow{x}=\lambda+\sqrt{\delta\left(\mu−\lambda\right)\lambda} \\ $$$${with}\:\delta=\frac{\mathrm{8}\alpha\sqrt{\mathrm{3}}}{{g}},\:\mu=\frac{{u}^{\mathrm{2}} −\mathrm{2}\alpha{a}}{\mathrm{4}\alpha}=\frac{{u}^{\mathrm{2}} }{\mathrm{4}\alpha}−\frac{{a}}{\mathrm{2}} \\ $$$$\frac{{dx}}{{d}\lambda}=\mathrm{1}+\frac{\delta\left(\mu−\mathrm{2}\lambda\right)}{\mathrm{2}\sqrt{\delta\left(\mu−\lambda\right)\lambda}}=\mathrm{0} \\ $$$$\frac{\delta\left(\mathrm{2}\lambda−\mu\right)}{\mathrm{2}\sqrt{\delta\left(\mu−\lambda\right)\lambda}}=\mathrm{1} \\ $$$$\delta^{\mathrm{2}} \left(\mu^{\mathrm{2}} −\mathrm{4}\mu\lambda+\mathrm{4}\lambda^{\mathrm{2}} \right)=\mathrm{4}\delta\left(\mu−\lambda\right)\lambda \\ $$$$\Rightarrow\mathrm{4}\left(\delta−\mathrm{1}\right)\lambda^{\mathrm{2}} −\mathrm{4}\mu\left(\delta+\mathrm{1}\right)\lambda+\delta\mu^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\lambda=\frac{\mu\left(\delta+\mathrm{1}−\sqrt{\mathrm{3}\delta+\mathrm{1}}\right)}{\mathrm{2}\left(\delta−\mathrm{1}\right)} \\ $$$$\Rightarrow{y}=\sqrt{\mathrm{3}}\lambda=\frac{\mu\sqrt{\mathrm{3}}\left(\delta+\mathrm{1}−\sqrt{\mathrm{3}\delta+\mathrm{1}}\right)}{\mathrm{2}\left(\delta−\mathrm{1}\right)} \\ $$
Commented by ajfour last updated on 10/May/19
$$\mathrm{Thanks}\:\mathrm{Sir},\:\mathrm{you}\:\mathrm{have}\:\mathrm{managed}\:\mathrm{it} \\ $$$$\mathrm{too}\:\mathrm{well}.\:\:\mathrm{I}\:\mathrm{shall}\:\mathrm{also}\:\mathrm{try}.. \\ $$