Question Number 59378 by tanmay last updated on 09/May/19
Answered by tanmay last updated on 09/May/19
$${Total}\:{force}=\mathrm{2}{T} \\ $$$${common}\:{accelaration}\:{a}_{{c}} =\frac{\mathrm{2}{T}}{{m}_{{man}} +{m}_{{plank}} }=\frac{\mathrm{200}}{\mathrm{150}} \\ $$$${a}_{{c}} =\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${F}_{} =\frac{\mathrm{4}}{\mathrm{3}}×\mathrm{50}=\frac{\mathrm{200}}{\mathrm{3}} \\ $$$$\left({F}_{{friction}} \right)_{{max}} =\mu{mg}=\frac{\mathrm{1}}{\mathrm{6}}×\mathrm{50}×\mathrm{10}=\frac{\mathrm{250}}{\mathrm{3}} \\ $$$$\frac{{so}\:{F}_{{friction}} =\frac{\mathrm{200}}{\mathrm{3}}{N}\rightarrow{towards}\:{right}\:}{} \\ $$$${i}\:{think}\:{so} \\ $$
Answered by mr W last updated on 10/May/19
$${assume}\:{man}\:{doesn}'{t}\:{slide}\:{on}\:{the}\:{plank}, \\ $$$${i}.{e}.\:{friction}\:{force}\:{F}\:{between}\:{man}\:{and} \\ $$$${plank}\:{is}\:{less}\:{than}\:\mu{mg}=\frac{\mathrm{50}×\mathrm{10}}{\mathrm{6}}=\frac{\mathrm{250}}{\mathrm{3}}\:{N}. \\ $$$${man}\:{and}\:{plank}\:{move}\:{towards}\:{right} \\ $$$${with}\:{acceleration}\:{a}, \\ $$$${a}=\frac{\mathrm{2}{T}}{{m}+{M}}=\frac{\mathrm{2}×\mathrm{100}}{\mathrm{50}+\mathrm{100}}=\frac{\mathrm{4}}{\mathrm{3}}\:{m}/{s}^{\mathrm{2}} \\ $$$$ \\ $$$${plank}: \\ $$$${Ma}={T}+{F} \\ $$$$\Rightarrow{F}={Ma}−{T}=\mathrm{100}×\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{100}=\frac{\mathrm{100}}{\mathrm{3}}\:{N} \\ $$$${i}.{e}.\:{the}\:{friction}\:{force}\:{acting}\:{on}\:{the}\:{plank} \\ $$$${is}\:\frac{\mathrm{100}}{\mathrm{3}}\:{N},\:{towards}\:{right}.\:{that}\:{means} \\ $$$${the}\:{friction}\:{force}\:{acting}\:{on}\:{the}\:{man} \\ $$$${is}\:{also}\:\frac{\mathrm{100}}{\mathrm{3}}{N},\:{but}\:{towards}\:{left}. \\ $$$${since}\:{friction}\:{force}\:{is}\:\frac{\mathrm{100}}{\mathrm{3}}\:{which}\:{is} \\ $$$${less}\:{than}\:\frac{\mathrm{250}}{\mathrm{3}},\:{the}\:{assumption}\:{is} \\ $$$${true}\:{that}\:{man}\:{and}\:{plank}\:{make}\:{the} \\ $$$${same}\:{motion}. \\ $$$$ \\ $$$${or}\:{look}\:{at}\:{the}\:{man}: \\ $$$${ma}={T}+{F} \\ $$$$\Rightarrow{F}={ma}−{T}=\mathrm{50}×\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{100}=−\frac{\mathrm{100}}{\mathrm{3}}\:{N} \\ $$$${i}.{e}.\:{F}\:{is}\:{towards}\:{left}. \\ $$$$ \\ $$$$\Rightarrow{answer}\:\left({A}\right)\:{is}\:{correct}. \\ $$