Menu Close

Question-59380




Question Number 59380 by rahul 19 last updated on 09/May/19
Answered by tanmay last updated on 09/May/19
N_((cup andball)) cosθ=(mg)_(ball)   N_((cup and ball)) sinθ=N_(ball and ball)   (N_(cup and ball) /N_(ball and ball) )=(1/(sinθ))  cos2θ=(((3r)^2 +(3r)^2 −(2r)^2 )/(2×3r×3r))=((14r^2 )/(18r^2 ))=(7/9)  1−2sin^2 θ=(7/9)  (2/9)=2sin^2 θ→sinθ=(1/3)  So answer=(1/(sinθ))=3
$${N}_{\left({cup}\:{andball}\right)} {cos}\theta=\left({mg}\right)_{{ball}} \\ $$$${N}_{\left({cup}\:{and}\:{ball}\right)} {sin}\theta={N}_{{ball}\:{and}\:{ball}} \\ $$$$\frac{{N}_{{cup}\:{and}\:{ball}} }{{N}_{{ball}\:{and}\:{ball}} }=\frac{\mathrm{1}}{{sin}\theta} \\ $$$${cos}\mathrm{2}\theta=\frac{\left(\mathrm{3}{r}\right)^{\mathrm{2}} +\left(\mathrm{3}{r}\right)^{\mathrm{2}} −\left(\mathrm{2}{r}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{3}{r}×\mathrm{3}{r}}=\frac{\mathrm{14}{r}^{\mathrm{2}} }{\mathrm{18}{r}^{\mathrm{2}} }=\frac{\mathrm{7}}{\mathrm{9}} \\ $$$$\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \theta=\frac{\mathrm{7}}{\mathrm{9}} \\ $$$$\frac{\mathrm{2}}{\mathrm{9}}=\mathrm{2}{sin}^{\mathrm{2}} \theta\rightarrow{sin}\theta=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\boldsymbol{{S}}{o}\:{answer}=\frac{\mathrm{1}}{{sin}\theta}=\mathrm{3} \\ $$
Commented by tanmay last updated on 09/May/19
2θ=angle between 3r and 3r
$$\mathrm{2}\theta={angle}\:{between}\:\mathrm{3}{r}\:{and}\:\mathrm{3}{r} \\ $$$$ \\ $$
Commented by mr W last updated on 09/May/19
please check sir:  sin θ=(1/(3−1))=(1/2)  ⇒answer (b)
$${please}\:{check}\:{sir}: \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{3}−\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{answer}\:\left({b}\right) \\ $$
Commented by tanmay last updated on 09/May/19
ok sir i shall draw and check...pls suggest app  for drawing..
$${ok}\:{sir}\:{i}\:{shall}\:{draw}\:{and}\:{check}…{pls}\:{suggest}\:{app} \\ $$$${for}\:{drawing}.. \\ $$
Commented by mr W last updated on 09/May/19
usually i use “photo editor” to modify  images.
$${usually}\:{i}\:{use}\:“{photo}\:{editor}''\:{to}\:{modify} \\ $$$${images}. \\ $$
Commented by tanmay last updated on 09/May/19
ok sir...
$${ok}\:{sir}… \\ $$
Commented by mr W last updated on 09/May/19
Commented by rahul 19 last updated on 10/May/19
thank U both sirs!
$${thank}\:{U}\:{both}\:{sirs}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *