Question Number 59407 by cesar.marval.larez@gmail.com last updated on 09/May/19
![](https://www.tinkutara.com/question/7948.png)
Commented by cesar.marval.larez@gmail.com last updated on 09/May/19
![I need help please](https://www.tinkutara.com/question/Q59410.png)
$$\mathrm{I}\:\mathrm{need}\:\mathrm{help}\:\mathrm{please} \\ $$
Answered by MJS last updated on 10/May/19
![A′=A+2AP^(→) =A+2(P−A)=2P−A= =2 (((−2)),(1),(0) ) − ((2),(1),(3) ) = (((−6)),(1),((−3)) ) r= { ((x=1+2t)),((y=0)),((z=−2−t)) :}= (((1+2t)),(0),((−2−t)) ) r′=2P−r=2 (((−2)),(1),(0) ) − (((1+2t)),(0),((−2−t)) ) = (((−5−2t)),(2),((2+t)) ) = = { ((x=−5−2t)),((y=2)),((z=2+t)) :} α: x−11y+2z+3=0 x′=−4−x y′=2−y z′=0−z ⇒ α′: (−4−x)−11(2−y)+2(−z)+3=0 ⇒ α′: −x+11y−2z−23=0](https://www.tinkutara.com/question/Q59429.png)
$${A}'={A}+\mathrm{2}\overset{\rightarrow} {{AP}}={A}+\mathrm{2}\left({P}−{A}\right)=\mathrm{2}{P}−{A}= \\ $$$$=\mathrm{2}\begin{pmatrix}{−\mathrm{2}}\\{\mathrm{1}}\\{\mathrm{0}}\end{pmatrix}\:−\begin{pmatrix}{\mathrm{2}}\\{\mathrm{1}}\\{\mathrm{3}}\end{pmatrix}\:=\begin{pmatrix}{−\mathrm{6}}\\{\mathrm{1}}\\{−\mathrm{3}}\end{pmatrix} \\ $$$$ \\ $$$${r}=\begin{cases}{{x}=\mathrm{1}+\mathrm{2}{t}}\\{{y}=\mathrm{0}}\\{{z}=−\mathrm{2}−{t}}\end{cases}=\begin{pmatrix}{\mathrm{1}+\mathrm{2}{t}}\\{\mathrm{0}}\\{−\mathrm{2}−{t}}\end{pmatrix} \\ $$$${r}'=\mathrm{2}{P}−{r}=\mathrm{2}\begin{pmatrix}{−\mathrm{2}}\\{\mathrm{1}}\\{\mathrm{0}}\end{pmatrix}\:−\begin{pmatrix}{\mathrm{1}+\mathrm{2}{t}}\\{\mathrm{0}}\\{−\mathrm{2}−{t}}\end{pmatrix}\:=\begin{pmatrix}{−\mathrm{5}−\mathrm{2}{t}}\\{\mathrm{2}}\\{\mathrm{2}+{t}}\end{pmatrix}\:= \\ $$$$=\begin{cases}{{x}=−\mathrm{5}−\mathrm{2}{t}}\\{{y}=\mathrm{2}}\\{{z}=\mathrm{2}+{t}}\end{cases} \\ $$$$ \\ $$$$\alpha:\:{x}−\mathrm{11}{y}+\mathrm{2}{z}+\mathrm{3}=\mathrm{0} \\ $$$${x}'=−\mathrm{4}−{x} \\ $$$${y}'=\mathrm{2}−{y} \\ $$$${z}'=\mathrm{0}−{z} \\ $$$$\Rightarrow\:\alpha':\:\left(−\mathrm{4}−{x}\right)−\mathrm{11}\left(\mathrm{2}−{y}\right)+\mathrm{2}\left(−{z}\right)+\mathrm{3}=\mathrm{0} \\ $$$$\Rightarrow\:\alpha':\:−{x}+\mathrm{11}{y}−\mathrm{2}{z}−\mathrm{23}=\mathrm{0} \\ $$
Commented by cesar.marval.larez@gmail.com last updated on 10/May/19
![wow it′s awesome sir, thanks](https://www.tinkutara.com/question/Q59430.png)
$$\mathrm{wow}\:\mathrm{it}'\mathrm{s}\:\mathrm{awesome}\:\mathrm{sir},\:\mathrm{thanks} \\ $$
Commented by MJS last updated on 10/May/19
![you′re welcome](https://www.tinkutara.com/question/Q59432.png)
$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$
Commented by cesar.marval.larez@gmail.com last updated on 10/May/19
![i have another problem, have you whatsapp?](https://www.tinkutara.com/question/Q59433.png)
$$\mathrm{i}\:\mathrm{have}\:\mathrm{another}\:\mathrm{problem},\:\mathrm{have}\:\mathrm{you}\:\mathrm{whatsapp}? \\ $$
Commented by MJS last updated on 10/May/19
![ok. where I live it′s 11:24 p.m. I will look at it tomorrow](https://www.tinkutara.com/question/Q59497.png)
$$\mathrm{ok}.\:\mathrm{where}\:\mathrm{I}\:\mathrm{live}\:\mathrm{it}'\mathrm{s}\:\mathrm{11}:\mathrm{24}\:\mathrm{p}.\mathrm{m}. \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{look}\:\mathrm{at}\:\mathrm{it}\:\mathrm{tomorrow} \\ $$
Commented by cesar.marval.larez@gmail.com last updated on 10/May/19
![I am gonna send you, watch the mail](https://www.tinkutara.com/question/Q59451.png)
$$\mathrm{I}\:\mathrm{am}\:\mathrm{gonna}\:\mathrm{send}\:\mathrm{you},\:\mathrm{watch}\:\mathrm{the}\:\mathrm{mail} \\ $$
Commented by cesar.marval.larez@gmail.com last updated on 10/May/19
![i sent you mail now](https://www.tinkutara.com/question/Q59464.png)
$$\mathrm{i}\:\mathrm{sent}\:\mathrm{you}\:\mathrm{mail}\:\mathrm{now} \\ $$
Commented by MJS last updated on 10/May/19
![I didn′t recieve anything. please check it](https://www.tinkutara.com/question/Q59468.png)
$$\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{recieve}\:\mathrm{anything}.\:\mathrm{please}\:\mathrm{check}\:\mathrm{it} \\ $$
Commented by cesar.marval.larez@gmail.com last updated on 10/May/19
![i did the post here](https://www.tinkutara.com/question/Q59495.png)
$$\mathrm{i}\:\mathrm{did}\:\mathrm{the}\:\mathrm{post}\:\mathrm{here}\: \\ $$
Commented by cesar.marval.larez@gmail.com last updated on 10/May/19
![nevermind i think the problem is in Calculus Vector area](https://www.tinkutara.com/question/Q59498.png)
$$\mathrm{nevermind}\:\mathrm{i}\:\mathrm{think}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{in}\:\mathrm{Calculus}\:\mathrm{Vector}\:\mathrm{area} \\ $$