Menu Close

Question-59599




Question Number 59599 by tanmay last updated on 12/May/19
Answered by tanmay last updated on 12/May/19
T_r =((tan(x/2^(r+1) )(1+tan^2 (x/2^(r+1) )))/(1−tan^2 (x/2^(r+1) )))  T_r =((tan(x/2^(r+1) ))/(cos2×(x/2^(r+1) )))  =((tan(x/2^(r+1) ))/(cos(x/2^r )))  f(x)=lim_(n→∞) (((tan(x/2))/(cos(x/2^0 )))+((tan(x/2^2 ))/(cos(x/2)))+((tan(x/2^3 ))/(cos(x/2^2 )))+..+((tan(x/2^(n+1) ))/(cos(x/2^n ))))  lim_(x→0) ((f(x))/x)  lim_(n→∞) (((tan(x/2))/((x/2)×2×cos(x/2^0 )))+((tan(x/2^2 ))/((x/2^2 )×2^2 ×cos(x/2)))+...+((tan(x/2^(n+1) ))/((x/2^(n+1) )×2^(n+1) ×cos(x/2^n ))))  =(1/2)+(1/2^2 )+(1/2^3 )+..∞   (gp series)  =((1/2)/(1−(1/2)))=1
$${T}_{{r}} =\frac{{tan}\frac{{x}}{\mathrm{2}^{{r}+\mathrm{1}} }\left(\mathrm{1}+{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}^{{r}+\mathrm{1}} }\right)}{\mathrm{1}−{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}^{{r}+\mathrm{1}} }} \\ $$$${T}_{{r}} =\frac{{tan}\frac{{x}}{\mathrm{2}^{{r}+\mathrm{1}} }}{{cos}\mathrm{2}×\frac{{x}}{\mathrm{2}^{{r}+\mathrm{1}} }} \\ $$$$=\frac{{tan}\frac{{x}}{\mathrm{2}^{{r}+\mathrm{1}} }}{{cos}\frac{{x}}{\mathrm{2}^{{r}} }} \\ $$$${f}\left({x}\right)=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{tan}\frac{{x}}{\mathrm{2}}}{{cos}\frac{{x}}{\mathrm{2}^{\mathrm{0}} }}+\frac{{tan}\frac{{x}}{\mathrm{2}^{\mathrm{2}} }}{{cos}\frac{{x}}{\mathrm{2}}}+\frac{{tan}\frac{{x}}{\mathrm{2}^{\mathrm{3}} }}{{cos}\frac{{x}}{\mathrm{2}^{\mathrm{2}} }}+..+\frac{{tan}\frac{{x}}{\mathrm{2}^{{n}+\mathrm{1}} }}{{cos}\frac{{x}}{\mathrm{2}^{{n}} }}\right) \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{f}\left({x}\right)}{{x}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{tan}\frac{{x}}{\mathrm{2}}}{\frac{{x}}{\mathrm{2}}×\mathrm{2}×{cos}\frac{{x}}{\mathrm{2}^{\mathrm{0}} }}+\frac{{tan}\frac{{x}}{\mathrm{2}^{\mathrm{2}} }}{\frac{{x}}{\mathrm{2}^{\mathrm{2}} }×\mathrm{2}^{\mathrm{2}} ×{cos}\frac{{x}}{\mathrm{2}}}+…+\frac{{tan}\frac{{x}}{\mathrm{2}^{{n}+\mathrm{1}} }}{\frac{{x}}{\mathrm{2}^{{n}+\mathrm{1}} }×\mathrm{2}^{{n}+\mathrm{1}} ×{cos}\frac{{x}}{\mathrm{2}^{{n}} }}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+..\infty\:\:\:\left({gp}\:{series}\right) \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *