Question-59627 Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 59627 by naka3546 last updated on 12/May/19 Answered by tanmay last updated on 12/May/19 3−13[(a+b+c)(1a2+1b2+1c2)]=(b+ca2+c+ab2+a+bc2+1a+1b+1c)−13(a+b+c)(1a2+1b2+1c2)=b+ca2+c+ab2+a+bc2+1a+1b+1c−13(a+b+c)(1a2+1b2+1c2)letlefthandsideexpression=prighthandsideexoression=qwehavetoprovep−q=+veotq−p=−venowq=p+1a+1b+1c−13(a+b+c)(1a2+1b2+1c2)q−p1a+1b+1c⩾3(1abc)13a+b+c3⩾(abc)131a2+1b2+1c2⩾3(1a2b2c2)13(a+b+c)(1a2+1b2+1c2)⩾3(abc)13×3(1a2b2c2)13so13(a+b+c)(1a2+1b2+1c2)⩾3(abc)13×1(abc)2313(a+b+c)(1a2+1b2+1c2)⩾3(abc)13now3(1abc)13−3(abc)13=0correctiondonesop=q……. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-190699Next Next post: f-x-sinx-cosx-f-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.