Menu Close

Question-59639




Question Number 59639 by Tawa1 last updated on 12/May/19
Commented by Tawa1 last updated on 12/May/19
Please help me to continue.  My final answer is wrong.     I got:   S  =  ((2n^3  + 3n^2  + n)/6)      but  answer is            S  =  (n/6) (14n^2  − 9n + 1)
Pleasehelpmetocontinue.Myfinalansweriswrong.Igot:S=2n3+3n2+n6butanswerisS=n6(14n29n+1)
Commented by tanmay last updated on 12/May/19
T_r =(r×(n_c_r  /n_c_(r−1)  ))^2 =(((r×((n!)/(r!(n−r)!)))/((n!)/((n−r+1)!(r−1)!))))^2   =(((r×(r−1)!(n−r+1)!)/(r!(n−r)!)))^2   =(n−r+1)^2   T_r =(n+1)^2 −2(n+1)r+r^2   T_1 =(n+1)^2 −2(n+1)×1+1^2   T_2 =(n+1)^2 −2(n+1)×2+2^2   T_3 =(n+1)^2 −2(n+1)×3+3^2   ....  ....  T_n =(n+1)^2 −2(n+1)×n+n^2   now add them  S=n×(n+1)^2 −2(n+1)(1+2+3+..+n)+(1^2 +2^2 +..+n^2 )  S=n(n+1)^2 −2(n+1)×((n(n+1))/2)+((n(n+1)(2n+1))/6)  S=((n(2n^2 +3n+1))/6)  S=((2n^3 +3n^2 +n)/6)
Tr=(r×ncrncr1)2=(r×n!r!(nr)!n!(nr+1)!(r1)!)2=(r×(r1)!(nr+1)!r!(nr)!)2=(nr+1)2Tr=(n+1)22(n+1)r+r2T1=(n+1)22(n+1)×1+12T2=(n+1)22(n+1)×2+22T3=(n+1)22(n+1)×3+32..Tn=(n+1)22(n+1)×n+n2nowaddthemS=n×(n+1)22(n+1)(1+2+3+..+n)+(12+22+..+n2)S=n(n+1)22(n+1)×n(n+1)2+n(n+1)(2n+1)6S=n(2n2+3n+1)6S=2n3+3n2+n6
Commented by Tawa1 last updated on 13/May/19
That means am right sir.  God bless you
Thatmeansamrightsir.Godblessyou

Leave a Reply

Your email address will not be published. Required fields are marked *