Menu Close

Question-59926




Question Number 59926 by rahul 19 last updated on 16/May/19
Commented by rahul 19 last updated on 16/May/19
5,6.
$$\mathrm{5},\mathrm{6}. \\ $$
Answered by tanmay last updated on 16/May/19
cosxdy=ysinxdx−y^2 dx  −ysinxdx+cosxdy=−y^2 dx  ((−ysinxdx+cosxdy)/1)=−y^2 dx  d(cosx×y)=−y^2 dx  ((d(ycosx))/(y^2 cos^2 x))=−(dx/(cos^2 x))  ((−1)/((ycosx)))=−tanx−c  secx=y(tanx+c)
$${cosxdy}={ysinxdx}−{y}^{\mathrm{2}} {dx} \\ $$$$−{ysinxdx}+{cosxdy}=−{y}^{\mathrm{2}} {dx} \\ $$$$\frac{−{ysinxdx}+{cosxdy}}{\mathrm{1}}=−{y}^{\mathrm{2}} {dx} \\ $$$${d}\left({cosx}×{y}\right)=−{y}^{\mathrm{2}} {dx} \\ $$$$\frac{{d}\left({ycosx}\right)}{{y}^{\mathrm{2}} {cos}^{\mathrm{2}} {x}}=−\frac{{dx}}{{cos}^{\mathrm{2}} {x}} \\ $$$$\frac{−\mathrm{1}}{\left({ycosx}\right)}=−{tanx}−{c} \\ $$$${secx}={y}\left({tanx}+{c}\right) \\ $$$$ \\ $$$$ \\ $$
Answered by tanmay last updated on 16/May/19
(dy/dx)=((xy^5 +2y)/x)  (dy/dx)=y^5 +((2y)/x)  (dy/dx)−((2y)/x)=y^5   y^(−5) (dy/dx)−((2y^(−4) )/x)=1  t=y^(−5+1)   (dt/dx)=−4×y^(−5) ×(dy/dx)  ((−1)/4)×(dt/dx)−((2t)/x)=1  (dt/dx)+((8t)/x)=−4  Intregating factor e^(∫(8/x)dx) =e^(8lnx) =x^8   x^8 (dt/dx)+8x^7 t=−4x^8   (d/dx)(x^8 ×t)=−4x^8   d(x^8 t)=−4x^8 dx  ∫d(x^8 t)=−4∫x^8 dx  x^8 t=((−4)/9)×x^9 +c  x^8 ×y^(−4) =((−4)/9)×x^9 +c  9x^8 =−4x^9 y^4 +y^4 ×9c  9x^8 +4x^9 y^4 =y^4 ×9c
$$\frac{{dy}}{{dx}}=\frac{{xy}^{\mathrm{5}} +\mathrm{2}{y}}{{x}} \\ $$$$\frac{{dy}}{{dx}}={y}^{\mathrm{5}} +\frac{\mathrm{2}{y}}{{x}} \\ $$$$\frac{{dy}}{{dx}}−\frac{\mathrm{2}{y}}{{x}}={y}^{\mathrm{5}} \\ $$$${y}^{−\mathrm{5}} \frac{{dy}}{{dx}}−\frac{\mathrm{2}{y}^{−\mathrm{4}} }{{x}}=\mathrm{1} \\ $$$${t}={y}^{−\mathrm{5}+\mathrm{1}} \\ $$$$\frac{{dt}}{{dx}}=−\mathrm{4}×{y}^{−\mathrm{5}} ×\frac{{dy}}{{dx}} \\ $$$$\frac{−\mathrm{1}}{\mathrm{4}}×\frac{{dt}}{{dx}}−\frac{\mathrm{2}{t}}{{x}}=\mathrm{1} \\ $$$$\frac{{dt}}{{dx}}+\frac{\mathrm{8}{t}}{{x}}=−\mathrm{4} \\ $$$${Intregating}\:{factor}\:{e}^{\int\frac{\mathrm{8}}{{x}}{dx}} ={e}^{\mathrm{8}{lnx}} ={x}^{\mathrm{8}} \\ $$$${x}^{\mathrm{8}} \frac{{dt}}{{dx}}+\mathrm{8}{x}^{\mathrm{7}} {t}=−\mathrm{4}{x}^{\mathrm{8}} \\ $$$$\frac{{d}}{{dx}}\left({x}^{\mathrm{8}} ×{t}\right)=−\mathrm{4}{x}^{\mathrm{8}} \\ $$$${d}\left({x}^{\mathrm{8}} {t}\right)=−\mathrm{4}{x}^{\mathrm{8}} {dx} \\ $$$$\int{d}\left({x}^{\mathrm{8}} {t}\right)=−\mathrm{4}\int{x}^{\mathrm{8}} {dx} \\ $$$${x}^{\mathrm{8}} {t}=\frac{−\mathrm{4}}{\mathrm{9}}×{x}^{\mathrm{9}} +{c} \\ $$$${x}^{\mathrm{8}} ×{y}^{−\mathrm{4}} =\frac{−\mathrm{4}}{\mathrm{9}}×{x}^{\mathrm{9}} +{c} \\ $$$$\mathrm{9}{x}^{\mathrm{8}} =−\mathrm{4}{x}^{\mathrm{9}} {y}^{\mathrm{4}} +{y}^{\mathrm{4}} ×\mathrm{9}{c} \\ $$$$\mathrm{9}{x}^{\mathrm{8}} +\mathrm{4}{x}^{\mathrm{9}} {y}^{\mathrm{4}} ={y}^{\mathrm{4}} ×\mathrm{9}{c} \\ $$
Commented by rahul 19 last updated on 16/May/19
thank you sir!
$${thank}\:{you}\:{sir}! \\ $$
Commented by tanmay last updated on 16/May/19
most welcome...now i think you are counting  days to wrestle with the math+physics in  coming exam...
$${most}\:{welcome}…{now}\:{i}\:{think}\:{you}\:{are}\:{counting} \\ $$$${days}\:{to}\:{wrestle}\:{with}\:{the}\:{math}+{physics}\:{in} \\ $$$${coming}\:{exam}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *