Menu Close

Question-59936




Question Number 59936 by Sardor2211 last updated on 16/May/19
Answered by tanmay last updated on 16/May/19
x(√(1+y^2 )) +(dy/dx).y.(√(1+x^2 )) =0  x(√(1+y^2 )) dx+y(√(1+x^2 )) dy=0  ((xdx)/( (√(1+x^2 ))))+((ydy)/( (√(1+y^2 ))))=dc  (1/2)∫((d(1+x^2 ))/( (√(1+x^2 ))))+(1/2)∫((d(1+y^2 ))/( (√(1+y^2 ))))=∫dc  ((√(1+x^2 ))/(1/2))×(1/2)+((√(1+y^2 ))/(1/2))×(1/2)=c  (√(1+x^2 )) +(√(1+y^2 )) =c
$${x}\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\:+\frac{{dy}}{{dx}}.{y}.\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:=\mathrm{0} \\ $$$${x}\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\:{dx}+{y}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:{dy}=\mathrm{0} \\ $$$$\frac{{xdx}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}+\frac{{ydy}}{\:\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}={dc} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{1}+{y}^{\mathrm{2}} \right)}{\:\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}=\int{dc} \\ $$$$\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\frac{\mathrm{1}}{\mathrm{2}}}×\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}{\frac{\mathrm{1}}{\mathrm{2}}}×\frac{\mathrm{1}}{\mathrm{2}}={c} \\ $$$$\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\:={c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *