Question Number 60021 by Tawa1 last updated on 17/May/19
Answered by tanmay last updated on 17/May/19
$${dW}=\overset{\rightarrow} {{F}}.{d}\overset{\rightarrow} {{r}} \\ $$$$\:\:\:\:\:\:\:\:\:={Fdrco}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\frac{{q}_{\mathrm{1}} {q}_{\mathrm{2}} }{{r}^{\mathrm{2}} }{drcos}\theta \\ $$$${W}=\frac{{q}_{\mathrm{1}} {q}_{\mathrm{2}} {cos}\theta}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }\int_{{r}_{\mathrm{1}} } ^{{r}_{\mathrm{2}} } \frac{{dr}}{{r}^{\mathrm{2}} } \\ $$$${W}=\frac{{q}_{\mathrm{1}} {q}_{\mathrm{2}} {cos}\theta}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }×\left(−\right)\left[\frac{\mathrm{1}}{{r}_{\mathrm{2}} }−\frac{\mathrm{1}}{{r}_{\mathrm{1}} }\right] \\ $$$$=\frac{{q}_{\mathrm{1}} {q}_{\mathrm{2}} {cos}\theta}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }×\left[\frac{\mathrm{1}}{{r}_{\mathrm{1}} }−\frac{\mathrm{1}}{{r}_{\mathrm{2}} }\right] \\ $$$${now}\:\:{q}_{\mathrm{1}} =\mathrm{2}×\mathrm{10}^{−\mathrm{4}} {C} \\ $$$${q}_{\mathrm{2}} =\mathrm{3}×\mathrm{10}^{−\mathrm{5}} {C},\:\:\:\:\theta=\pi \\ $$$${r}_{\mathrm{1}} =\mathrm{50}×\mathrm{10}^{−\mathrm{2}} {meter} \\ $$$${r}_{\mathrm{2}} =\mathrm{20}×\mathrm{10}^{−\mathrm{2}} {meter} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}\pi\epsilon_{\mathrm{0}} }=\mathrm{9}×\mathrm{10}^{\mathrm{9}} \\ $$$${W}=\mathrm{9}×\mathrm{10}^{\mathrm{9}} ×\mathrm{2}×\mathrm{10}^{−\mathrm{4}} ×\mathrm{3}×\mathrm{10}^{−\mathrm{5}} ×{cos}\pi×\left[\frac{\mathrm{1}}{\mathrm{50}×\mathrm{10}^{−\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{20}×\mathrm{10}^{−\mathrm{2}} }\right] \\ $$$${W}=\left(−\mathrm{54}\right)×\left[\mathrm{2}−\mathrm{5}\right] \\ $$$${W}=\mathrm{162} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$
Commented by Tawa1 last updated on 17/May/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$