Menu Close

Question-60135




Question Number 60135 by Tawa1 last updated on 18/May/19
Answered by tanmay last updated on 18/May/19
q_1 =8.5×10^(−6) C at x_1 =3.0×10^(−2) meter  q_2 =−21×10^(−6) C at x_2 =9.0×10^(−2) meter  q_0 (test charge=1C at x_o =6.0×10^(−2) meter  foce on q_o  by q_1  is repulsive directed towards +ve x axis  F_1 =9×10^9 ×((8.5×10^(−6) )/((6×10^(−2) −3×10^(−2) )^2 ))  F_1 =9×10^9 ×((8.5×10^(−6) )/(9×10^(−4) ))=8.5×10^7 N  force on q_o  by q_2   attractiveF directed +ve x axis  F_2 =9×10^9 ×((21×10^(−6) )/((9.0×10^(−2) −6.0×10^(−2) )^2 ))  F_2 =9×10^9 ×((21×10^(−6) )/(9×10^(−4) ))=21×10^7 N  so net electric field=8.5×10^7 +21×10^7   =29.5×10^7   and direction +ve  x[axis  pls check
$${q}_{\mathrm{1}} =\mathrm{8}.\mathrm{5}×\mathrm{10}^{−\mathrm{6}} {C}\:{at}\:{x}_{\mathrm{1}} =\mathrm{3}.\mathrm{0}×\mathrm{10}^{−\mathrm{2}} {meter} \\ $$$${q}_{\mathrm{2}} =−\mathrm{21}×\mathrm{10}^{−\mathrm{6}} {C}\:{at}\:{x}_{\mathrm{2}} =\mathrm{9}.\mathrm{0}×\mathrm{10}^{−\mathrm{2}} {meter} \\ $$$${q}_{\mathrm{0}} \left({test}\:{charge}=\mathrm{1}{C}\:{at}\:{x}_{{o}} =\mathrm{6}.\mathrm{0}×\mathrm{10}^{−\mathrm{2}} {meter}\right. \\ $$$${foce}\:{on}\:{q}_{{o}} \:{by}\:{q}_{\mathrm{1}} \:{is}\:{repulsive}\:{directed}\:{towards}\:+{ve}\:{x}\:{axis} \\ $$$${F}_{\mathrm{1}} =\mathrm{9}×\mathrm{10}^{\mathrm{9}} ×\frac{\mathrm{8}.\mathrm{5}×\mathrm{10}^{−\mathrm{6}} }{\left(\mathrm{6}×\mathrm{10}^{−\mathrm{2}} −\mathrm{3}×\mathrm{10}^{−\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${F}_{\mathrm{1}} =\mathrm{9}×\mathrm{10}^{\mathrm{9}} ×\frac{\mathrm{8}.\mathrm{5}×\mathrm{10}^{−\mathrm{6}} }{\mathrm{9}×\mathrm{10}^{−\mathrm{4}} }=\mathrm{8}.\mathrm{5}×\mathrm{10}^{\mathrm{7}} {N} \\ $$$${force}\:{on}\:{q}_{{o}} \:{by}\:{q}_{\mathrm{2}} \:\:{attractiveF}\:{directed}\:+{ve}\:{x}\:{axis} \\ $$$${F}_{\mathrm{2}} =\mathrm{9}×\mathrm{10}^{\mathrm{9}} ×\frac{\mathrm{21}×\mathrm{10}^{−\mathrm{6}} }{\left(\mathrm{9}.\mathrm{0}×\mathrm{10}^{−\mathrm{2}} −\mathrm{6}.\mathrm{0}×\mathrm{10}^{−\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${F}_{\mathrm{2}} =\mathrm{9}×\mathrm{10}^{\mathrm{9}} ×\frac{\mathrm{21}×\mathrm{10}^{−\mathrm{6}} }{\mathrm{9}×\mathrm{10}^{−\mathrm{4}} }=\mathrm{21}×\mathrm{10}^{\mathrm{7}} {N} \\ $$$${so}\:{net}\:{electric}\:{field}=\mathrm{8}.\mathrm{5}×\mathrm{10}^{\mathrm{7}} +\mathrm{21}×\mathrm{10}^{\mathrm{7}} \\ $$$$=\mathrm{29}.\mathrm{5}×\mathrm{10}^{\mathrm{7}} \:\:{and}\:{direction}\:+{ve}\:\:{x}\left[{axis}\right. \\ $$$${pls}\:{check} \\ $$
Commented by Tawa1 last updated on 18/May/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by peter frank last updated on 19/May/19
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *