Question Number 60318 by Sardor2211 last updated on 19/May/19
Commented by kaivan.ahmadi last updated on 20/May/19
$${we}\:{find}\:{I}=\int{x}^{\mathrm{2}} {arctgx}\:{dx}\:{then}\:{multiply}\:\mathrm{4} \\ $$$${u}={arctgx}\Rightarrow{du}=\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${dv}={x}^{\mathrm{2}} {dx}\Rightarrow{v}=\frac{{x}^{\mathrm{3}} }{\mathrm{3}} \\ $$$${I}={uv}−\int{vdu}=\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} {arctgx}−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}= \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} {arctgx}−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{x}^{\mathrm{3}} +{x}−{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} {arctgx}− \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{x}^{\mathrm{3}} +{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}+\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} {arctgx}− \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\int{xdx}+\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} {arctvx}−\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{6}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)+{C} \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 20/May/19
$${let}\:{A}\:=\int\:\mathrm{4}{x}^{\mathrm{2}} \:{arctan}\left({x}\right){dx}\:\Rightarrow\:{A}\:=\mathrm{4}\int\:\:{x}^{\mathrm{2}} \:{arctanx}\:{dx}\:{by}\:{parts}\: \\ $$$${u}^{'} ={x}^{\mathrm{2}} \:\:{and}\:{v}\:={arctanx}\:\Rightarrow\:{A}\:=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:{arctanx}\:−\int\:\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:{arctan}\left({x}\right)\:−\frac{\mathrm{1}}{\mathrm{3}}\:\int\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\int\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\int\:\:\frac{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)−{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:=\int\:{xdx}\:−\int\:\:\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:+{c}\:\Rightarrow \\ $$$${A}\:=\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:{arctan}\left({x}\right)−\frac{\mathrm{1}}{\mathrm{6}}\:{x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{6}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:+{c}\:\:. \\ $$