Question Number 60320 by Sardor2211 last updated on 19/May/19
Commented by maxmathsup by imad last updated on 20/May/19
$${let}\:{I}\:=\int\:\:\frac{{x}^{\mathrm{3}} −\mathrm{5}{x}^{\mathrm{2}} \:+\mathrm{5}{x}\:+\mathrm{23}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}−\mathrm{5}\right)}{dx}\:\:{let}\:{decompose}\:{F}\left({x}\right)\:=\frac{{x}^{\mathrm{3}} −\mathrm{5}{x}^{\mathrm{2}} \:+\mathrm{5}{x}\:+\mathrm{23}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}−\mathrm{5}\right)} \\ $$$${F}\left({x}\right)\:=\frac{{x}^{\mathrm{3}} −\mathrm{5}{x}^{\mathrm{2}} \:+\mathrm{5}{x}\:+\mathrm{23}}{\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)\left({x}−\mathrm{5}\right)}\:=\mathrm{1}+\frac{{a}}{{x}−\mathrm{1}}\:+\frac{{b}}{{x}+\mathrm{1}}\:+\frac{{c}}{{x}−\mathrm{5}} \\ $$$${a}\:={lim}_{{x}\rightarrow\mathrm{1}} \left({x}−\mathrm{1}\right){F}\left({x}\right)\:=\frac{\mathrm{1}−\mathrm{5}+\mathrm{5}+\mathrm{23}}{\mathrm{2}\left(−\mathrm{4}\right)}\:=\frac{\mathrm{24}}{−\mathrm{8}}\:=−\mathrm{3} \\ $$$${b}\:={lim}_{{x}\rightarrow−\mathrm{1}} \left({x}+\mathrm{1}\right){F}\left({x}\right)\:=\frac{−\mathrm{1}−\mathrm{5}−\mathrm{5}+\mathrm{23}}{\left(−\mathrm{2}\right)\left(−\mathrm{6}\right)}\:=\frac{\mathrm{12}}{\mathrm{12}}\:=\mathrm{1} \\ $$$${c}\:={lim}_{{x}\rightarrow\mathrm{5}} \left({x}−\mathrm{5}\right){F}\left({x}\right)\:=\:\frac{\mathrm{5}^{\mathrm{3}} −\mathrm{5}^{\mathrm{3}} \:+\mathrm{25}\:+\mathrm{23}}{\mathrm{4}.\mathrm{6}}\:=\frac{\mathrm{48}}{\mathrm{24}}\:=\mathrm{2}\:\Rightarrow \\ $$$${F}\left({x}\right)\:=\mathrm{1}\:−\frac{\mathrm{3}}{{x}−\mathrm{1}}\:+\frac{\mathrm{1}}{{x}+\mathrm{1}}\:+\frac{\mathrm{2}}{{x}−\mathrm{5}}\:\Rightarrow{I}\:=\int\:{F}\left({x}\right){dx}\:\:\Rightarrow \\ $$$${I}\:={x}\:−\mathrm{3}{ln}\mid{x}−\mathrm{1}\mid+{ln}\mid{x}+\mathrm{1}\mid\:+\mathrm{2}{ln}\mid{x}−\mathrm{5}\mid\:+{C}\:. \\ $$$$ \\ $$