Menu Close

Question-60413




Question Number 60413 by tanmay last updated on 20/May/19
Commented by Meritguide1234 last updated on 21/May/19
why do you post same question and solition from goiit page by Sourav De
whydoyoupostsamequestionandsolitionfromgoiitpagebySouravDe
Commented by MJS last updated on 21/May/19
why not?
whynot?
Commented by tanmay last updated on 21/May/19
we are all students...we are not  Tomas hardy   or Ramanujam...we learn from  each other  what do[you want to say.. i just shared the solution  to others...i am not in the side of others  who think that they know every thing...i am still  a student...i have miles to go ..
weareallstudentswearenotTomashardyorRamanujamwelearnfromeachotherwhatdo[youwanttosay..ijustsharedthesolutiontoothersiamnotinthesideofotherswhothinkthattheyknoweverythingiamstillastudentihavemilestogo..
Commented by maxmathsup by imad last updated on 26/May/19
this platform is open to all kind of exercices we do not distinguich   that and  that  thanks to sir Tinkutara....
thisplatformisopentoallkindofexerciceswedonotdistinguichthatandthatthankstosirTinkutara.
Answered by tanmay last updated on 21/May/19
∫_a ^b f(x)dx=∫_a ^b f(a+b−x)dx  I=∫_0 ^1 ((tan^(−1) ((x/(x+1))))/(tan^(−1) (((1+2x−2x^2 )/2))))dx  =∫_0 ^1 ((tan^(−1) (((1−x)/(1−x+1))))/(tan^(−1) (((1+2(1−x)−2(1−x)^2 )/2))))dx  =∫_0 ^1 ((tan^(−1) (((1−x)/(2−x))))/(tan^(−1) (((1+2−2x−2+4x−2x^2 )/2))))dx  =∫_0 ^1 ((tan^(−1) (((1−x)/(1+x))))/(tan^(−1) (((1+2x−2x^2 )/2))))dx  2I=∫_0 ^1 ((tan^(−1) ((x/(x+1)))+tan^(−1) (((1−x)/(2−x))))/(tan^(−1) (((1+2x−2x^2 )/2))))dx  now  N_r   tan^(−1) ((x/(x+1)))+tan^(−1) (((1−x)/(2−x)))  =tan^(−1) ((((x/(x+1))+((1−x)/(2−x)))/(1−((x(1−x))/((x+1)(2−x))))))  =tan^(−1) (((2x−x^2 +1−x^2 )/(2x−x^2 +2−x−x+x^2 )))  =tan^(−1) (((1+2x−2x^2 )/2))=D_r   so (N_r /D_r )=1  2I=∫_0 ^1 1×dx  2I=1  I=(1/2)
abf(x)dx=abf(a+bx)dxI=01tan1(xx+1)tan1(1+2x2x22)dx=01tan1(1x1x+1)tan1(1+2(1x)2(1x)22)dx=01tan1(1x2x)tan1(1+22x2+4x2x22)dx=01tan1(1x1+x)tan1(1+2x2x22)dx2I=01tan1(xx+1)+tan1(1x2x)tan1(1+2x2x22)dxnowNrtan1(xx+1)+tan1(1x2x)=tan1(xx+1+1x2x1x(1x)(x+1)(2x))=tan1(2xx2+1x22xx2+2xx+x2)=tan1(1+2x2x22)=DrsoNrDr=12I=011×dx2I=1I=12
Commented by Meritguide1234 last updated on 21/May/19

Leave a Reply

Your email address will not be published. Required fields are marked *