Menu Close

Question-60445




Question Number 60445 by ANTARES VY last updated on 21/May/19
Commented by bhanukumarb2@gmail.com last updated on 21/May/19
cauchy inequality
$${cauchy}\:{inequality}\: \\ $$
Answered by MJS last updated on 21/May/19
x=sinh u  y=sinh v  e^(u+v) =2019  v=ln 2019 −u  sinh u =(1/2)(e^u −e^(−u) )  sinh v =(1/2)(2019e^(−u) −(1/(2019))e^u )=((2019)/(2e^u ))−(e^u /(4038))  (x+2019y)(y+2019x)=  =((2038180)/e^u )×((2038180e^u )/(2019))=((4 154 177 712 400)/(2019))
$${x}=\mathrm{sinh}\:{u} \\ $$$${y}=\mathrm{sinh}\:{v} \\ $$$$\mathrm{e}^{{u}+{v}} =\mathrm{2019} \\ $$$${v}=\mathrm{ln}\:\mathrm{2019}\:−{u} \\ $$$$\mathrm{sinh}\:{u}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{e}^{{u}} −\mathrm{e}^{−{u}} \right) \\ $$$$\mathrm{sinh}\:{v}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2019e}^{−{u}} −\frac{\mathrm{1}}{\mathrm{2019}}\mathrm{e}^{{u}} \right)=\frac{\mathrm{2019}}{\mathrm{2e}^{{u}} }−\frac{\mathrm{e}^{{u}} }{\mathrm{4038}} \\ $$$$\left({x}+\mathrm{2019}{y}\right)\left({y}+\mathrm{2019}{x}\right)= \\ $$$$=\frac{\mathrm{2038180}}{\mathrm{e}^{{u}} }×\frac{\mathrm{2038180e}^{{u}} }{\mathrm{2019}}=\frac{\mathrm{4}\:\mathrm{154}\:\mathrm{177}\:\mathrm{712}\:\mathrm{400}}{\mathrm{2019}} \\ $$
Answered by MJS last updated on 21/May/19
y=x  (x+(√(x^2 +1)))^2 =2019  ⇒ x=((1009)/(2019))(√(2019))  (2020x)^2 =((4 154 177 712 400)/(2019))
$${y}={x} \\ $$$$\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{2019} \\ $$$$\Rightarrow\:{x}=\frac{\mathrm{1009}}{\mathrm{2019}}\sqrt{\mathrm{2019}} \\ $$$$\left(\mathrm{2020}{x}\right)^{\mathrm{2}} =\frac{\mathrm{4}\:\mathrm{154}\:\mathrm{177}\:\mathrm{712}\:\mathrm{400}}{\mathrm{2019}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *