Menu Close

Question-60534




Question Number 60534 by aliesam last updated on 21/May/19
Commented by maxmathsup by imad last updated on 22/May/19
we have ∫_(−∞) ^(+∞)    (dx/(1+e^x^2  )) =2 ∫_0 ^(+∞)   (e^(−x^2 ) /(1+e^(−x^2 ) ))dx  =2 ∫_0 ^∞   e^(−x^2 ) (Σ_(n=0) ^∞  (−1)^n  e^(−nx^2 ) )dx=2 Σ_(=0) ^(∞ ) (−1)^n   ∫_0 ^∞    e^(−(n+1)x^2 ) dx  =_((√(n+1))x =u)     2 Σ_(n=0) ^∞ (−1)^n  ∫_0 ^∞    e^(−u^2 )    (du/( (√(n+1)))) =2 ((√π)/2)  Σ_(n=0) ^∞   (((−1)^n )/( (√(n+1))))  =(√π)Σ_(n=0) ^∞   (((−1)^n )/( (√(n+1))))     we have    Σ_(n=0) ^∞    (((−1)^n )/( (√(n+1)))) =Σ_(n=1) ^∞   (((−1)^(n−1) )/( (√n)))  =−Σ_(n=1) ^∞   (1/( (√(2n))))   +Σ_(n=0) ^∞   (1/( (√(2n+1)))) =−(1/( (√2)))ξ((1/2))+Σ_(n=0) ^∞   (1/( (√(2n+1))))  Σ_(n=1) ^∞   (1/( (√n))) =Σ_(n=1) ^∞  (1/( (√(2n)))) +Σ_(n=0) ^∞   (1/( (√(2n+1))))  ⇒Σ_(n=0) ^∞  (1/( (√(2n+1)))) =ξ((1/2))−(1/( (√2)))ξ((1/2))  =(1−(1/( (√2))))ξ((1/2)) ⇒ Σ_(n=0) ^∞   (((−1)^n )/( (√(n+1)))) =−(1/( (√2)))ξ((1/2)) +(1−(1/( (√2))))ξ((1/2))  =(1−(√2))ξ((1/2)) ⇒ ∫_(−∞) ^(+∞)    (dx/(1+e^x^2  ))  =(√π)(1−(√2))ξ((1/2))  the equality is proved .
$${we}\:{have}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{e}^{{x}^{\mathrm{2}} } }\:=\mathrm{2}\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{e}^{−{x}^{\mathrm{2}} } }{\mathrm{1}+{e}^{−{x}^{\mathrm{2}} } }{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{x}^{\mathrm{2}} } \left(\sum_{{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{{n}} \:{e}^{−{nx}^{\mathrm{2}} } \right){dx}=\mathrm{2}\:\sum_{=\mathrm{0}} ^{\infty\:} \left(−\mathrm{1}\right)^{{n}} \:\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\left({n}+\mathrm{1}\right){x}^{\mathrm{2}} } {dx} \\ $$$$=_{\sqrt{{n}+\mathrm{1}}{x}\:={u}} \:\:\:\:\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{\boldsymbol{{n}}} \:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−{u}^{\mathrm{2}} } \:\:\:\frac{\boldsymbol{{du}}}{\:\sqrt{\boldsymbol{{n}}+\mathrm{1}}}\:=\mathrm{2}\:\frac{\sqrt{\pi}}{\mathrm{2}}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\:\sqrt{{n}+\mathrm{1}}} \\ $$$$=\sqrt{\pi}\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\:\sqrt{{n}+\mathrm{1}}}\:\:\:\:\:{we}\:{have}\:\:\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\:\sqrt{{n}+\mathrm{1}}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{n}}−\mathrm{1}} }{\:\sqrt{\boldsymbol{{n}}}} \\ $$$$=−\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{n}}}\:\:\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{n}+\mathrm{1}}}\:=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\xi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{n}+\mathrm{1}}} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{n}}}\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{n}+\mathrm{1}}}\:\:\Rightarrow\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{n}+\mathrm{1}}}\:=\xi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\xi\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\xi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\Rightarrow\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\:\sqrt{{n}+\mathrm{1}}}\:=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\xi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:+\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\xi\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\xi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{e}^{{x}^{\mathrm{2}} } }\:\:=\sqrt{\pi}\left(\mathrm{1}−\sqrt{\mathrm{2}}\right)\xi\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${the}\:{equality}\:{is}\:{proved}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *