Menu Close

Question-60647




Question Number 60647 by ajfour last updated on 23/May/19
Commented by ajfour last updated on 23/May/19
Find maximum side length of a  square circumscribing a rectangle  with sides a and b.
$${Find}\:{maximum}\:{side}\:{length}\:{of}\:{a} \\ $$$${square}\:{circumscribing}\:{a}\:{rectangle} \\ $$$${with}\:{sides}\:{a}\:{and}\:{b}. \\ $$
Commented by mr W last updated on 23/May/19
if a≠b i think  there is an unique square with  s=((a+b)/( (√2)))  due to symmetry.  if a=b, there are infinite squares.  the max. square has side length  s=(√2)a
$${if}\:{a}\neq{b}\:{i}\:{think} \\ $$$${there}\:{is}\:{an}\:{unique}\:{square}\:{with} \\ $$$${s}=\frac{{a}+{b}}{\:\sqrt{\mathrm{2}}} \\ $$$${due}\:{to}\:{symmetry}. \\ $$$${if}\:{a}={b},\:{there}\:{are}\:{infinite}\:{squares}. \\ $$$${the}\:{max}.\:{square}\:{has}\:{side}\:{length} \\ $$$${s}=\sqrt{\mathrm{2}}{a} \\ $$
Commented by ajfour last updated on 24/May/19
thank you Sir, i agree.
$${thank}\:{you}\:{Sir},\:{i}\:{agree}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *