Menu Close

Question-60716




Question Number 60716 by peter frank last updated on 24/May/19
Commented by maxmathsup by imad last updated on 25/May/19
let A(x) =((x/(x+1)))^x  ⇒A(x) =(1−((x+1)/x))^x  =e^(x ln(1−(1/(x+1))))   but we have for u ∈V(0) ln(1−u) ∼−u ⇒ln(1−(1/(x+1)))∼−(1/(x+1)) for x∈V(+∞)  ⇒xln(1−(1/(x+1))) ∼−(x/(x+1)) →−1  (x→+∞) ⇒lim_(x→+∞) A(x) =e^(−1)  =(1/e)  ★lim_(x→+∞) ((x/(x+1)))^x  =(1/e)★ .
letA(x)=(xx+1)xA(x)=(1x+1x)x=exln(11x+1)butwehaveforuV(0)ln(1u)uln(11x+1)1x+1forxV(+)xln(11x+1)xx+11(x+)limx+A(x)=e1=1elimx+(xx+1)x=1e.
Answered by Smail last updated on 24/May/19
((x/(1+x)))^x =((1/(1+1/x)))^x =(1+(1/x))^(−x) =e^(−xln(1+1/x))   Let   t=1/x  e^(−xln(1+1/x)) =e^(−((ln(1+t))/t))   ln(1+t)∼_0 t  So  e^(−((ln(1+t))/t)) ∼_0 e^(−(t/t)) =(1/e)  Thus,  lim_(x→∞) e^(−xln(1+1/x)) =lim_(x→∞) ((x/(1+x)))^x =(1/e)
(x1+x)x=(11+1/x)x=(1+1x)x=exln(1+1/x)Lett=1/xexln(1+1/x)=eln(1+t)tln(1+t)0tSoeln(1+t)t0ett=1eThus,limexxln(1+1/x)=limx(x1+x)x=1e
Commented by peter frank last updated on 24/May/19
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *