Question Number 60981 by necx1 last updated on 28/May/19

Commented by Prithwish sen last updated on 28/May/19

Commented by tanmay last updated on 28/May/19

Commented by Prithwish sen last updated on 28/May/19

Commented by ajfour last updated on 28/May/19

Commented by Prithwish sen last updated on 28/May/19

Commented by Mr X pcx last updated on 28/May/19

Answered by MJS last updated on 28/May/19

Commented by tanmay last updated on 28/May/19

Answered by tanmay last updated on 28/May/19
![lim_(x→∞) (a_(x+1) /a_x ) =lim_(x→∞) (({(((x+1)!)/((x+1)^(x+1) ))})/((((x!)/x^x )))) =lim_(x→∞) (((x+1)!)/(x!))×(1/(((x+1)^(x+1) )/x^x )) =lim_(x→∞) (x+1)×(1/((x+1)(((x+1)/x))^x )) =lim_(x→∞) (1/((1+(1/x))^x )) now t=(1/x) y=lim_(t→0) (1/((1+t)^(1/t) )) lny=lim_(t→0) [((−ln(1+t))/t)] lny=−1 y=e^(−1) so lim_(x→∞) (((x!)/x^x ))^(1/x) =e^(−1) →it is the answer using cauchy second theorem on limit lim_(n→∞) (a_n )^(1/n) =l if lim_(n→∞) (a_(n+1) /a_n )=l](https://www.tinkutara.com/question/Q60995.png)
Commented by necx1 last updated on 28/May/19
