Menu Close

Question-60981




Question Number 60981 by necx1 last updated on 28/May/19
Commented by Prithwish sen last updated on 28/May/19
Let   A=lim_(x→∞) (((x!)/x^x ))^(1/x)   ∴lnA=lim_(x→∞) (1/x)ln(((1.2.3...........x)/(x.x.x............x)))  =lim_(x→∞) (1/x)(ln(1/x) +ln(2/x) + ........ln(x/x) )  =lim_(x→∞) (1/x)Σ_(r=1) ^x ln(r/x)  =∫_0 ^1 lnydy=(ylny−y)_0 ^1   =−1  ∴ A=e^(−1) =(1/e)
LetA=limx(x!xx)1xlnA=limx1xln(1.2.3..xx.x.xx)=limx1x(ln1x+ln2x+..lnxx)=limx1xxr=1lnrxMissing \left or extra \right=1A=e1=1e
Commented by tanmay last updated on 28/May/19
bah darun excellent...
bahdarunexcellent
Commented by Prithwish sen last updated on 28/May/19
thank you sir.
thankyousir.
Commented by ajfour last updated on 28/May/19
Extremely great Sir, thanks a lot.
ExtremelygreatSir,thanksalot.
Commented by Prithwish sen last updated on 28/May/19
welcome.
welcome.
Commented by Mr X pcx last updated on 28/May/19
stirling gormulae  n! ∼ n^n  e^(−n) (√(2πn))     or   x! ∼x^x  e^(−x) (√(2πx)) ⇒((x!)/x^x ) ∼ e^(−x) (√(2πx)) ⇒  (((x!)/x^x ))^(1/x)   =(e^(−x) (√(2πx)))^(1/x)  =A(x)  ln(A(x)) =(1/x)ln(e^(−x) (√(2πx)))  =−1  +(1/(2x)){ln(2π) +ln(x)}  =−1 +((ln(2π))/(2x)) +((ln(x))/(2x)) →−1(x→+∞)  ⇒lim_(x→+∞)  A(x)=e^(−1)  =(1/e)  so lim_(x→+∞)  (((x!)/x^x ))^(1/x)  =(1/e) .
stirlinggormulaen!nnen2πnorx!xxex2πxx!xxex2πx(x!xx)1x=(ex2πx)1x=A(x)ln(A(x))=1xln(ex2πx)=1+12x{ln(2π)+ln(x)}=1+ln(2π)2x+ln(x)2x1(x+)limx+A(x)=e1=1esolimx+(x!xx)1x=1e.
Answered by MJS last updated on 28/May/19
tried with Stirling′s formula  x!≈((x/e))^x (√(2πx))  (((x!)/x^x ))^(1/x) =((x!^(1/x) )/x)≈(1/x)(((x/e))^x (√(2πx)))^(1/x) =(1/x)×(x/e)(2πx)^(1/(2x)) =  =(1/e)×2^(1/(2x)) ×π^(1/(2x)) ×x^(1/(2x))   lim_(x→∞) (1/e)×2^(1/(2x)) ×π^(1/(2x)) ×x^(1/(2x)) =(1/e)  this seems right, computing shows  (((100!)/(100^(100) )))^(1/(100)) ≈.379927  (((200!)/(200^(200) )))^(1/(200)) ≈.374502  (((300!)/(300^(300) )))^(1/(300)) ≈.372533  (((400!)/(400^(400) )))^(1/(400)) ≈.371498  (1/e)≈.367879
triedwithStirlingsformulax!(xe)x2πx(x!xx)1x=x!1xx1x((xe)x2πx)1x=1x×xe(2πx)12x==1e×212x×π12x×x12xlimx1e×212x×π12x×x12x=1ethisseemsright,computingshows(100!100100)1100.379927(200!200200)1200.374502(300!300300)1300.372533(400!400400)1400.3714981e.367879
Commented by tanmay last updated on 28/May/19
bah darun excellent...one problem but solution  three method...
bahdarunexcellentoneproblembutsolutionthreemethod
Answered by tanmay last updated on 28/May/19
lim_(x→∞) (a_(x+1) /a_x )  =lim_(x→∞)   (({(((x+1)!)/((x+1)^(x+1) ))})/((((x!)/x^x ))))  =lim_(x→∞)  (((x+1)!)/(x!))×(1/(((x+1)^(x+1) )/x^x ))  =lim_(x→∞)  (x+1)×(1/((x+1)(((x+1)/x))^x ))  =lim_(x→∞)  (1/((1+(1/x))^x ))  now t=(1/x)  y=lim_(t→0)  (1/((1+t)^(1/t) ))  lny=lim_(t→0) [((−ln(1+t))/t)]  lny=−1  y=e^(−1)   so lim_(x→∞) (((x!)/x^x ))^(1/x) =e^(−1) →it is the answer  using cauchy second theorem on limit  lim_(n→∞) (a_n )^(1/n) =l  if lim_(n→∞)  (a_(n+1) /a_n )=l
limxax+1ax=limx{(x+1)!(x+1)x+1}(x!xx)=limx(x+1)!x!×1(x+1)x+1xx=limx(x+1)×1(x+1)(x+1x)x=limx1(1+1x)xnowt=1xy=limt01(1+t)1tlny=limt0[ln(1+t)t]lny=1y=e1solimx(x!xx)1x=e1itistheanswerusingcauchysecondtheoremonlimitlimn(an)1n=liflimnan+1an=l
Commented by necx1 last updated on 28/May/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *