Question Number 60987 by ajfour last updated on 28/May/19
Commented by ajfour last updated on 28/May/19
$${Find}\:{the}\:{illuminated}\:{area}\:{of} \\ $$$${the}\:{inner}\:{curved}\:{surface}\:{of}\: \\ $$$${shown},\:{hollow}\:{open}\:{cylinder}. \\ $$$$\:\:\:\:\:\:\left[{where}\:\:{a}>\mathrm{2}{R}\left(\frac{{H}}{{h}}−\mathrm{1}\right)\right]\:\:\:\:\: \\ $$
Answered by mr W last updated on 28/May/19
Commented by mr W last updated on 30/May/19
$$\mathrm{tan}\:\alpha=\frac{{R}\:\mathrm{sin}\:\theta}{{a}+{R}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)}=\frac{\mathrm{sin}\:\theta}{\frac{{a}}{{R}}+\mathrm{1}+\mathrm{cos}\:\theta} \\ $$$$\theta_{\mathrm{0}} =\frac{\pi}{\mathrm{2}}+\alpha_{\mathrm{0}} =\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{{R}}{{a}+{R}} \\ $$$${R}^{\mathrm{2}} ={SA}^{\mathrm{2}} +\left({a}+{R}\right)^{\mathrm{2}} −\mathrm{2}\:{SA}\:\left({a}+{R}\right)\mathrm{cos}\:\alpha \\ $$$$\Rightarrow{SA}^{\mathrm{2}} −\mathrm{2}\left({a}+{R}\right)\mathrm{cos}\:\alpha\:{SA}+{a}\left({a}+\mathrm{2}{R}\right)=\mathrm{0} \\ $$$${SA}=\left({a}+{R}\right)\:\mathrm{cos}\:\alpha\pm\sqrt{\left({a}+{R}\right)^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\alpha−{a}\left({a}+\mathrm{2}{R}\right)} \\ $$$${SA}=\left({a}+{R}\right)\left\{\mathrm{cos}\:\alpha−\sqrt{\mathrm{cos}^{\mathrm{2}} \:\alpha−\frac{{a}\left({a}+\mathrm{2}{R}\right)}{\left({a}+{R}\right)^{\mathrm{2}} }}\right\} \\ $$$${SB}=\left({a}+{R}\right)\left\{\mathrm{cos}\:\alpha+\sqrt{\mathrm{cos}^{\mathrm{2}} \:\alpha−\frac{{a}\left({a}+\mathrm{2}{R}\right)}{\left({a}+{R}\right)^{\mathrm{2}} }}\right\} \\ $$$${AB}={SB}−{SA}=\mathrm{2}\left({a}+{R}\right)\sqrt{\mathrm{cos}^{\mathrm{2}} \:\alpha−\frac{{a}\left({a}+\mathrm{2}{R}\right)}{\left({a}+{R}\right)^{\mathrm{2}} }} \\ $$$$\frac{{h}−{z}}{{H}−{h}}=\frac{{AB}}{{SA}} \\ $$$$\Rightarrow{h}−{z}=\left({H}−{h}\right)\frac{{AB}}{{SA}}=\left({H}−{h}\right)\frac{\mathrm{2}\left({a}+{R}\right)\sqrt{\mathrm{cos}^{\mathrm{2}} \:\alpha−\frac{{a}\left({a}+\mathrm{2}{R}\right)}{\left({a}+{R}\right)^{\mathrm{2}} }}}{\left({a}+{R}\right)\left\{\mathrm{cos}\:\alpha−\sqrt{\mathrm{cos}^{\mathrm{2}} \:\alpha−\frac{{a}\left({a}+\mathrm{2}{R}\right)}{\left({a}+{R}\right)^{\mathrm{2}} }}\right\}} \\ $$$$\Rightarrow{h}−{z}=\frac{\mathrm{2}\left({H}−{h}\right)}{\left\{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\frac{{a}\left({a}+\mathrm{2}{R}\right)}{\left({a}+{R}\right)^{\mathrm{2}} }×\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \:\alpha}}}−\mathrm{1}\right\}} \\ $$$$\Rightarrow\Delta{z}={h}−{z}=\frac{\mathrm{2}\left({H}−{h}\right)}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\frac{{a}\left({a}+\mathrm{2}{R}\right)}{\left({a}+{R}\right)^{\mathrm{2}} }\left[\mathrm{1}+\left(\frac{\mathrm{sin}\:\theta}{\frac{{a}}{{R}}+\mathrm{1}+\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \right]}}−\mathrm{1}} \\ $$$${Illuminated}\:{area}={A} \\ $$$${let}\:\lambda=\frac{{a}}{{R}} \\ $$$${A}=\mathrm{2}\int_{\mathrm{0}} ^{\theta_{\mathrm{0}} } \Delta{zRd}\theta \\ $$$$\Rightarrow{A}=\mathrm{4}{R}\left({H}−{h}\right)\int_{\mathrm{0}} ^{\theta_{\mathrm{0}} } \frac{{d}\theta}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\frac{{a}\left({a}+\mathrm{2}{R}\right)}{\left({a}+{R}\right)^{\mathrm{2}} }\left[\mathrm{1}+\left(\frac{\mathrm{sin}\:\theta}{\frac{{a}}{{R}}+\mathrm{1}+\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \right]}}−\mathrm{1}} \\ $$$$\Rightarrow{A}=\mathrm{4}{R}\left({H}−{h}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+\lambda}} \frac{{d}\theta}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\left[\mathrm{1}−\frac{\mathrm{1}}{\left(\mathrm{1}+\lambda\right)^{\mathrm{2}} }\right]\left[\mathrm{1}+\left(\frac{\mathrm{sin}\:\theta}{\mathrm{1}+\lambda+\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \right]}}−\mathrm{1}} \\ $$$${with}\:\mu=\mathrm{1}+\lambda=\frac{{a}+{R}}{{R}} \\ $$$$\frac{{A}}{\mathrm{4}{R}\left({H}−{h}\right)}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mu}} \frac{{d}\theta}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\left[\mathrm{1}−\frac{\mathrm{1}}{\mu^{\mathrm{2}} }\right]\left[\mathrm{1}+\left(\frac{\mathrm{sin}\:\theta}{\mu+\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \right]}}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mu^{\mathrm{2}} −\mathrm{1}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mu}} \left(\mathrm{1}+\mu\:\mathrm{cos}\:\theta\right)\:{d}\theta \\ $$$$=\frac{\mathrm{1}}{\mu^{\mathrm{2}} −\mathrm{1}}\left[\mu\:\mathrm{sin}\:\theta+\theta\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mu}} \\ $$$$=\frac{\mathrm{1}}{\mu^{\mathrm{2}} −\mathrm{1}}\left[\mu\:\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mu}\right)+\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mu}\right] \\ $$$$=\frac{\mathrm{1}}{\mu^{\mathrm{2}} −\mathrm{1}}\left[\sqrt{\mu^{\mathrm{2}} −\mathrm{1}}+\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mu}\right] \\ $$$$ \\ $$$$\Rightarrow{A}=\frac{\mathrm{4}{R}\left({H}−{h}\right)}{\mu^{\mathrm{2}} −\mathrm{1}}\left(\sqrt{\mu^{\mathrm{2}} −\mathrm{1}}+\frac{\pi}{\mathrm{2}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\mu}\right) \\ $$$${with}\:\mu=\frac{{a}+{R}}{{R}} \\ $$
Commented by ajfour last updated on 30/May/19
$${Great},\:{work}\:{Sir}!\:{thanks}\:{so}\:{much}. \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$
Commented by mr W last updated on 30/May/19
$${thanks}\:{for}\:{checking}\:{sir}! \\ $$$${the}\:{integral}\:{seems}\:{to}\:{be}\:{complicated}, \\ $$$${but}\:{it}'{s}\:{really}\:{easy}\:{after}\:{the}\:{expression} \\ $$$${is}\:{simplified},\:{see}\:{below}. \\ $$$$\frac{\mathrm{1}}{\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\left[\mathrm{1}−\frac{\mathrm{1}}{\mu^{\mathrm{2}} }\right]\left[\mathrm{1}+\left(\frac{\mathrm{sin}\:\theta}{\mu+\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \right]}}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\frac{\mu}{\:\sqrt{\mu^{\mathrm{2}} −\left(\mu^{\mathrm{2}} −\mathrm{1}\right)\left[\mathrm{1}+\left(\frac{\mathrm{sin}\:\theta}{\mu+\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \right]}}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\frac{\mu}{\:\sqrt{\mathrm{1}−\left(\mu^{\mathrm{2}} −\mathrm{1}\right)\left(\frac{\mathrm{sin}\:\theta}{\mu+\mathrm{cos}\:\theta}\right)^{\mathrm{2}} }}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\frac{\left(\mu+\mathrm{cos}\:\theta\right)\mu}{\:\sqrt{\left(\mu+\mathrm{cos}\:\theta\right)^{\mathrm{2}} −\left(\mu^{\mathrm{2}} −\mathrm{1}\right)\mathrm{sin}^{\mathrm{2}} \:\theta}}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\frac{\left(\mu+\mathrm{cos}\:\theta\right)\mu}{\:\sqrt{\mu^{\mathrm{2}} +\mathrm{2}\mu\mathrm{cos}\:\theta+\mathrm{cos}^{\mathrm{2}} \:\theta−\mu^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta+\mathrm{sin}^{\mathrm{2}} \:\theta}}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\frac{\left(\mu+\mathrm{cos}\:\theta\right)\mu}{\:\sqrt{\mu^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{2}\mu\mathrm{cos}\:\theta+\mathrm{1}}}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\frac{\left(\mu+\mathrm{cos}\:\theta\right)\mu}{\mu\mathrm{cos}\:\theta+\mathrm{1}}−\mathrm{1}} \\ $$$$=\frac{\mu\mathrm{cos}\:\theta+\mathrm{1}}{\left(\mu+\mathrm{cos}\:\theta\right)\mu−\left(\mu\mathrm{cos}\:\theta+\mathrm{1}\right)} \\ $$$$=\frac{\mu\:\mathrm{cos}\:\theta+\mathrm{1}}{\mu^{\mathrm{2}} −\mathrm{1}} \\ $$
Commented by ajfour last updated on 30/May/19
$${True}\:{Sir},\:{thanks}\:{again}. \\ $$
Commented by mr W last updated on 30/May/19
$${it}'{s}\:{again}\:{a}\:{nice}\:{question}\:{sir}! \\ $$