Question-61042 Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 61042 by aliesam last updated on 28/May/19 Answered by ajfour last updated on 28/May/19 letN△x=5−2=3x=2+n△x=2+3nN∫25(x3−1)dx=limN→∞3N∑Nn=1{(2+3nN)3−1}=limN→∞3N{7N+36NΣn+54N2Σn2+27N3Σn3}=21+limN→∞3N{36×(N+1)2+54×(N+1)(2N+1)6N+27×(N+1)24N}=21+54+54+814=14914. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-cot-1-1-x-x-1-x-2-Next Next post: given-points-a-b-where-a-b-R-how-to-get-the-best-fit-parabola-that-go-through-the-origin-and-open-downward-coefficient-of-x-2-is-negative- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.