Menu Close

Question-61165




Question Number 61165 by Tawa1 last updated on 29/May/19
Answered by MJS last updated on 30/May/19
∫((cos^2  (2x−5) cos (2x−14))/(cos (2x−7)))dx=       [t=2x−7 → dx=(dt/2)]  =(1/2)∫((cos^2  (t+2) cos (t−7))/(cos (t)))dt=       [use these:        cos^2  (t+2) =(cos 2 cos t −sin 2 sin t)^2         cos (t−7) =cos 7 cos t +sin 7 sin t        let me write c_α , s_α  for cos α, sin α]  =((c_2 ^2 c_7 )/2)∫cos^2  t dt+((c_2 (c_2 s_7 −2c_7 s_2 ))/2)∫cos t sin t dt+((s_2 (c_7 s_2 −2c_2 s_7 ))/2)∫sin^2  t dt+((s_2 ^2 s_7 )/2)∫sin^2  t tan t dt  ...now it′s easy to solve:  ∫cos^2  t dt=(1/2)∫(1+cos 2t)dt=(1/2)t+(1/4)sin 2t  ∫cos t sin t dt=(1/2)∫sin 2t dt=−(1/4)cos 2t  ∫sin^2  t dt=(1/2)∫(1−cos 2t)dt=(1/2)t−(1/4)sin 2t  ∫sin^2  t tan t dt=∫(tan t −cos t sin t)dt=  =∫tan t dt−∫cos t sin t dt=−ln cos t +(1/4)cos 2t  now re−substitute t=2x−7 and finally  add the constant factors and it′s done
$$\int\frac{\mathrm{cos}^{\mathrm{2}} \:\left(\mathrm{2}{x}−\mathrm{5}\right)\:\mathrm{cos}\:\left(\mathrm{2}{x}−\mathrm{14}\right)}{\mathrm{cos}\:\left(\mathrm{2}{x}−\mathrm{7}\right)}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2}{x}−\mathrm{7}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{2}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{cos}^{\mathrm{2}} \:\left({t}+\mathrm{2}\right)\:\mathrm{cos}\:\left({t}−\mathrm{7}\right)}{\mathrm{cos}\:\left({t}\right)}{dt}= \\ $$$$\:\:\:\:\:\left[\mathrm{use}\:\mathrm{these}:\right. \\ $$$$\:\:\:\:\:\:\mathrm{cos}^{\mathrm{2}} \:\left({t}+\mathrm{2}\right)\:=\left(\mathrm{cos}\:\mathrm{2}\:\mathrm{cos}\:{t}\:−\mathrm{sin}\:\mathrm{2}\:\mathrm{sin}\:{t}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\left({t}−\mathrm{7}\right)\:=\mathrm{cos}\:\mathrm{7}\:\mathrm{cos}\:{t}\:+\mathrm{sin}\:\mathrm{7}\:\mathrm{sin}\:{t} \\ $$$$\left.\:\:\:\:\:\:\mathrm{let}\:\mathrm{me}\:\mathrm{write}\:{c}_{\alpha} ,\:{s}_{\alpha} \:\mathrm{for}\:\mathrm{cos}\:\alpha,\:\mathrm{sin}\:\alpha\right] \\ $$$$=\frac{{c}_{\mathrm{2}} ^{\mathrm{2}} {c}_{\mathrm{7}} }{\mathrm{2}}\int\mathrm{cos}^{\mathrm{2}} \:{t}\:{dt}+\frac{{c}_{\mathrm{2}} \left({c}_{\mathrm{2}} {s}_{\mathrm{7}} −\mathrm{2}{c}_{\mathrm{7}} {s}_{\mathrm{2}} \right)}{\mathrm{2}}\int\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}\:{dt}+\frac{{s}_{\mathrm{2}} \left({c}_{\mathrm{7}} {s}_{\mathrm{2}} −\mathrm{2}{c}_{\mathrm{2}} {s}_{\mathrm{7}} \right)}{\mathrm{2}}\int\mathrm{sin}^{\mathrm{2}} \:{t}\:{dt}+\frac{{s}_{\mathrm{2}} ^{\mathrm{2}} {s}_{\mathrm{7}} }{\mathrm{2}}\int\mathrm{sin}^{\mathrm{2}} \:{t}\:\mathrm{tan}\:{t}\:{dt} \\ $$$$…\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}: \\ $$$$\int\mathrm{cos}^{\mathrm{2}} \:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}{t}\right){dt}=\frac{\mathrm{1}}{\mathrm{2}}{t}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{2}{t} \\ $$$$\int\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{sin}\:\mathrm{2}{t}\:{dt}=−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\mathrm{2}{t} \\ $$$$\int\mathrm{sin}^{\mathrm{2}} \:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}{t}\right){dt}=\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{2}{t} \\ $$$$\int\mathrm{sin}^{\mathrm{2}} \:{t}\:\mathrm{tan}\:{t}\:{dt}=\int\left(\mathrm{tan}\:{t}\:−\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}\right){dt}= \\ $$$$=\int\mathrm{tan}\:{t}\:{dt}−\int\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}\:{dt}=−\mathrm{ln}\:\mathrm{cos}\:{t}\:+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\mathrm{2}{t} \\ $$$$\mathrm{now}\:\mathrm{re}−\mathrm{substitute}\:{t}=\mathrm{2}{x}−\mathrm{7}\:\mathrm{and}\:\mathrm{finally} \\ $$$$\mathrm{add}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{factors}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{done} \\ $$
Commented by Tawa1 last updated on 30/May/19
Ohh.  I just saw it now sir. God bless you sir.     I will appreciate if you can help me finish up sir.      When you are less busy,   i will study it.  Thanks sir for your help.
$$\mathrm{Ohh}.\:\:\mathrm{I}\:\mathrm{just}\:\mathrm{saw}\:\mathrm{it}\:\mathrm{now}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\:\:\:\mathrm{I}\:\mathrm{will}\:\mathrm{appreciate}\:\mathrm{if}\:\mathrm{you}\:\mathrm{can}\:\mathrm{help}\:\mathrm{me}\:\mathrm{finish}\:\mathrm{up}\:\mathrm{sir}. \\ $$$$\:\:\:\:\mathrm{When}\:\mathrm{you}\:\mathrm{are}\:\mathrm{less}\:\mathrm{busy},\:\:\:\mathrm{i}\:\mathrm{will}\:\mathrm{study}\:\mathrm{it}.\:\:\mathrm{Thanks}\:\mathrm{sir}\:\mathrm{for}\:\mathrm{your}\:\mathrm{help}. \\ $$
Commented by MJS last updated on 30/May/19
did a few steps more...
$$\mathrm{did}\:\mathrm{a}\:\mathrm{few}\:\mathrm{steps}\:\mathrm{more}… \\ $$
Commented by Tawa1 last updated on 30/May/19
Yes, i get it now. God bless you more .  I appreciate.
$$\mathrm{Yes},\:\mathrm{i}\:\mathrm{get}\:\mathrm{it}\:\mathrm{now}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}\:.\:\:\mathrm{I}\:\mathrm{appreciate}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *