Question Number 61169 by Tawa1 last updated on 29/May/19
Commented by Tawa1 last updated on 29/May/19
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{Black} \\ $$
Answered by mr W last updated on 30/May/19
Commented by mr W last updated on 30/May/19
$${square}\:{side}\:{length}\:={a}=\mathrm{14}{cm} \\ $$$${R}={a} \\ $$$${r}=\frac{{a}}{\mathrm{2}} \\ $$$${OC}=\frac{{a}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{cos}\:\alpha=\frac{{a}^{\mathrm{2}} +\left(\frac{{a}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} −\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}{a}\left(\frac{{a}}{\:\sqrt{\mathrm{2}}}\right)}=\frac{\frac{\mathrm{5}}{\mathrm{4}}}{\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}}=\frac{\mathrm{5}\sqrt{\mathrm{2}}}{\mathrm{8}} \\ $$$$\mathrm{sin}\:\alpha=\frac{\sqrt{\mathrm{64}−\mathrm{25}×\mathrm{2}}}{\mathrm{8}}=\frac{\sqrt{\mathrm{14}}}{\mathrm{8}} \\ $$$$\Rightarrow\alpha=\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{14}}}{\mathrm{8}}\approx\mathrm{27}.\mathrm{89}° \\ $$$$\frac{\mathrm{sin}\:\angle{COE}}{{a}}=\frac{\mathrm{sin}\:\alpha}{\frac{{a}}{\mathrm{2}}} \\ $$$$\mathrm{sin}\:\angle{COE}=\mathrm{sin}\:\beta=\mathrm{2}\:\mathrm{sin}\:\alpha=\frac{\sqrt{\mathrm{14}}}{\mathrm{4}} \\ $$$$\Rightarrow\beta=\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{14}}}{\mathrm{4}}\approx\mathrm{69}.\mathrm{3}° \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}{A}_{{black}} =\frac{\beta{r}^{\mathrm{2}} }{\mathrm{2}}−\left(\frac{\alpha{R}^{\mathrm{2}} }{\mathrm{2}}−\frac{{R}×\frac{{a}}{\:\sqrt{\mathrm{2}}}×\mathrm{sin}\:\alpha}{\mathrm{2}}\right) \\ $$$$=\frac{\beta{a}^{\mathrm{2}} }{\mathrm{8}}−\frac{\alpha{a}^{\mathrm{2}} }{\mathrm{2}}+\frac{\sqrt{\mathrm{7}}{a}^{\mathrm{2}} }{\mathrm{16}} \\ $$$$=\frac{{a}^{\mathrm{2}} }{\mathrm{16}}\left(\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{14}}}{\mathrm{4}}−\mathrm{8}\:\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{14}}}{\mathrm{8}}+\sqrt{\mathrm{7}}\right) \\ $$$$\Rightarrow{A}_{{black}} =\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\left(\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{14}}}{\mathrm{4}}−\mathrm{8}\:\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{14}}}{\mathrm{8}}+\sqrt{\mathrm{7}}\right) \\ $$$$\approx\mathrm{0}.\mathrm{293}{a}^{\mathrm{2}} =\mathrm{57}.\mathrm{38}\:{cm}^{\mathrm{2}} \\ $$
Commented by Tawa1 last updated on 30/May/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate} \\ $$
Commented by Tawa1 last updated on 30/May/19
$$\mathrm{Sir},\:\mathrm{any}\:\mathrm{basis}\:\mathrm{to}\:\mathrm{learn}\:\mathrm{all}\:\mathrm{this}\:\mathrm{shapes}\:?.\:\:\:\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{start}\:\mathrm{learning} \\ $$$$\mathrm{it}\:\mathrm{from}\:\mathrm{the}\:\mathrm{begining} \\ $$
Commented by mr W last updated on 30/May/19
$${sorry}\:{i}\:{can}'{t}\:{answer}\:{your}\:{question}, \\ $$$${because}\:{i}\:{don}'{t}\:{know}\:{what}\:{have}\:{already} \\ $$$${learnt}\:{and}\:{what}\:{not}\:{yet}.\:{according}\:{to} \\ $$$${the}\:{questions}\:{you}\:{put}\:{here},\:{i}\:{think}, \\ $$$${you}\:{have}\:{all}\:{the}\:{knowledge}\:{which}\:{is} \\ $$$${necessary}\:{to}\:{solve}\:{such}\:{questions}. \\ $$
Commented by Tawa1 last updated on 30/May/19
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$
Commented by mr W last updated on 30/May/19
Commented by Tawa1 last updated on 30/May/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir} \\ $$