Question Number 61208 by Tawa1 last updated on 30/May/19
Commented by maxmathsup by imad last updated on 30/May/19
$${its}\:{only}\:{a}\:{try}\:{let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:\:{with}\:{t}\:\geqslant\mathrm{0} \\ $$$${we}\:{have}\:{f}^{'} \left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}\:{dx}\:\Rightarrow\mathrm{2}{f}^{'} \left({t}\right)\:=\int_{−\infty} ^{+\infty} \:\frac{{x}^{\mathrm{2}} }{\left(\mathrm{1}+{tx}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)}{dx} \\ $$$${let}\:{consider}\:{the}\:{complex}\:{function}\:\varphi\left({z}\right)\:=\frac{{z}^{\mathrm{2}} }{\left({tz}^{\mathrm{2}} +\mathrm{1}\right)\left({z}^{\mathrm{4}} \:+\mathrm{1}\right)} \\ $$$${poles}\:{of}\:\varphi?\:\:\:{we}\:{have}\:\varphi\left({z}\right)\:=\frac{{z}^{\mathrm{2}} }{\left(\sqrt{{t}}{z}+{i}\right)\left(\sqrt{{t}}{z}\:−{i}\right)\left({z}^{\mathrm{2}} −{i}\right)\left({z}^{\mathrm{2}} \:+{i}\right)} \\ $$$$=\frac{{z}^{\mathrm{2}} }{{t}\left({z}+\frac{{i}}{\:\sqrt{{t}}}\right)\left({z}−\frac{{i}}{\:\sqrt{{t}}}\right)\left({z}−{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}+{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)}\:\:\:\left({t}>\mathrm{0}\right) \\ $$$${so}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}\frac{{i}}{\:\sqrt{\:{t}}}\:\:,\overset{−} {+}{e}^{\frac{{i}\pi}{\mathrm{4}}} \:,\:\overset{−} {+}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\left\{\:{Res}\left(\varphi,\frac{{i}}{\:\sqrt{{t}}}\right)\:+{Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:+{Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\right\} \\ $$$${the}\:{poles}\:{are}\:{simples}\:{so} \\ $$$${Res}\left(\varphi,\frac{{i}}{\:\sqrt{{t}}}\right)\:={lim}_{{z}\rightarrow\frac{{i}}{\:\sqrt{{t}}}} \:\left({z}−\frac{{i}}{\:\sqrt{{t}}}\right)\varphi\left({z}\right)=\frac{−\mathrm{1}}{{t}^{\mathrm{2}} \left(\frac{\mathrm{2}{i}}{\:\sqrt{{t}}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)}\:=\frac{−\sqrt{{t}}}{\mathrm{2}{i}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)} \\ $$$${Res}\left(\varphi,{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\:={lim}_{{z}\rightarrow{e}^{\frac{{i}\pi}{\mathrm{4}}} } \:\:\:\:\left({z}−{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\varphi\left({z}\right)=\frac{{i}}{\left({ti}+\mathrm{1}\right)\left(\mathrm{2}{e}^{\frac{{i}\pi}{\mathrm{4}}} \right)\left(\mathrm{2}{i}\right)} \\ $$$$=\:\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{4}\left(\mathrm{1}+{it}\right)} \\ $$$${Res}\left(\varphi,−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\:=\frac{−{i}}{\left(\mathrm{1}−{it}\right)\left(−\mathrm{2}{i}\right)\left(−\mathrm{2}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)}\:=−\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{4}\left(\mathrm{1}−{it}\right)}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\:\:\frac{−\sqrt{{t}}}{\mathrm{2}{i}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)}\:+\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{4}\left(\mathrm{1}+{it}\right)}\:−\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{4}\left(\mathrm{1}−{it}\right)}\right\} \\ $$$$=\frac{−\pi\sqrt{{t}}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{{i}\pi}{\mathrm{2}}\:\left\{−\:\mathrm{2}{iIm}\left(\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{1}−{it}}\right)\right\}\:\:{but}\:\:\:\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{1}−{it}}\:=\frac{\left(\mathrm{1}+{it}\right)\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\frac{\left(\mathrm{1}+{it}\right)\left(\mathrm{1}+{i}\right)}{\:\sqrt{\mathrm{2}}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)}\:=\frac{\mathrm{1}+{i}+{it}−{t}}{\:\sqrt{\mathrm{2}}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)}\:=\frac{\mathrm{1}−{t}\:+\left({t}+\mathrm{1}\right){i}}{\:\sqrt{\mathrm{2}}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)}\:\Rightarrow \\ $$$${Im}\left(\frac{{e}^{\frac{{i}\pi}{\mathrm{4}}} }{\mathrm{1}−{it}}\right)\:=\frac{\mathrm{1}+{t}}{\:\sqrt{\mathrm{2}}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)}\:\:\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\frac{−\pi\sqrt{{t}}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{\pi\left(\mathrm{1}+{t}\right)}{{t}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$=\frac{−\pi\sqrt{{t}}\:+\pi\:+\pi{t}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:=\mathrm{2}{f}^{'} \left({t}\right)\:\Rightarrow \\ $$$${f}\left({t}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{t}} \:\:\frac{\pi{x}−\pi\sqrt{{x}}\:+\pi}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dt}\:\:+\lambda \\ $$$$\int_{\mathrm{0}} ^{{t}} \:\:\frac{\pi{x}−\pi\sqrt{{x}}\:+\pi}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dt}\:=\frac{\pi}{\mathrm{2}}{ln}\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)\:+\frac{\pi}{\mathrm{2}}\:{arctan}\left({t}\right)−\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{{t}} \:\frac{\sqrt{{x}}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dt} \\ $$$$\int_{\mathrm{0}} ^{{t}} \:\:\frac{\sqrt{{x}}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dt}\:=_{\sqrt{{x}}={u}} \:\:\:\:\int_{\mathrm{0}} ^{\sqrt{{t}}} \:\:\:\:\frac{{u}}{{u}^{\mathrm{4}} \:+\mathrm{1}}\:\left(\mathrm{2}{u}\right){du}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\sqrt{{t}}} \:\:\:\frac{{u}^{\mathrm{2}} }{{u}^{\mathrm{4}} \:+\mathrm{1}}\:{du}\:\Rightarrow \\ $$$${f}\left({t}\right)\:=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)+\frac{\pi}{\mathrm{2}}\:{arctan}\left({t}\right)−\pi\:\int_{\mathrm{0}} ^{\sqrt{{t}}} \frac{{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{4}} }\:{du}\: \\ $$$$\left(\lambda\:={f}\left(\mathrm{0}\right)=\mathrm{0}\right)\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:={f}\left(\mathrm{1}\right)= \\ $$$$\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:+\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:−\pi\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{4}} }\:{du} \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 30/May/19
$${let}\:{decompose}\:{F}\left({u}\right)\:=\frac{{u}^{\mathrm{2}} }{{u}^{\mathrm{4}} \:+\mathrm{1}}\:\Rightarrow{F}\left({u}\right)\:=\frac{{u}^{\mathrm{2}} }{\left({u}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}{u}^{\mathrm{2}} } \\ $$$$=\frac{{u}^{\mathrm{2}} }{\left({u}^{\mathrm{2}} +\sqrt{\mathrm{2}}{u}\:+\mathrm{1}\right)\left({u}^{\mathrm{2}} −\sqrt{\mathrm{2}}{u}\:+\mathrm{1}\right)}\:=\frac{{au}\:+{b}}{{u}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{u}\:+\mathrm{1}}\:+\frac{{cu}\:+{d}}{{u}^{\mathrm{2}} −\sqrt{\mathrm{2}}{u}\:+\mathrm{1}} \\ $$$${F}\left(−{u}\right)\:={F}\left({u}\right)\:\Rightarrow\frac{−{au}\:+{b}}{{u}^{\mathrm{2}} −\sqrt{\mathrm{2}}{u}\:+\mathrm{1}}\:+\frac{−{cu}\:+{d}}{{u}^{\mathrm{2}} +\sqrt{\mathrm{2}}{u}\:+\mathrm{1}}\:={F}\left({u}\right)\:\Rightarrow{c}=−{a}\:{and}\: \\ $$$${b}={d}\:\Rightarrow{F}\left({u}\right)\:=\frac{{au}\:+{b}}{{u}^{\mathrm{2}} +\sqrt{\mathrm{2}}{u}\:+\mathrm{1}}\:+\frac{−{au}\:+{b}}{{u}^{\mathrm{2}} −\sqrt{\mathrm{2}}{u}\:+\mathrm{1}} \\ $$$${F}\left(\mathrm{0}\right)\:=\mathrm{0}\:=\mathrm{2}{b}\:\Rightarrow{b}=\mathrm{0}\: \\ $$$${F}\left(\mathrm{1}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\:=\:\frac{{a}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:−\frac{{a}}{\mathrm{2}−\sqrt{\mathrm{2}}}\:=\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}−\mathrm{2}−\sqrt{\mathrm{2}}\right){a}}{\mathrm{2}}\:\Rightarrow\mathrm{1}=−\mathrm{2}\sqrt{\mathrm{2}}{a}\:\Rightarrow \\ $$$${a}\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\Rightarrow{F}\left({u}\right)\:=−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\frac{{u}}{{u}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{u}\:+\mathrm{1}}\:+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\frac{{u}}{{u}^{\mathrm{2}} −\sqrt{\mathrm{2}}{u}\:+\mathrm{1}}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{F}\left({u}\right){du}\:\:=−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}{u}+\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}}}{{u}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{u}\:+\mathrm{1}}\:{du}\:+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}{u}−\sqrt{\mathrm{2}}\:+\sqrt{\mathrm{2}}}{{u}^{\mathrm{2}} −\sqrt{\mathrm{2}}\:{u}\:+\mathrm{1}}{du} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\left[{ln}\left({u}^{\mathrm{2}} +\sqrt{\mathrm{2}}{u}\:+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:+\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{du}}{{u}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{u}\:+\mathrm{1}} \\ $$$$+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}\left[{ln}\left({u}^{\mathrm{2}} −\sqrt{\mathrm{2}}{u}\:+\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:+\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{du}}{{u}^{\mathrm{2}} −\sqrt{\mathrm{2}}{u}\:+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{du}}{{u}^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{u}\:+\mathrm{1}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{du}}{{u}^{\mathrm{2}} \:+\mathrm{2}\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{u}\:+\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{du}}{\left({u}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=_{{u}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\frac{{t}}{\:\sqrt{\mathrm{2}}}} \:\:\:\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{2}}\:+\mathrm{1}} \:\:\:\:\:\frac{{dt}}{\:\sqrt{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:=\sqrt{\mathrm{2}}\:\left[{arctan}\left({t}\right)\right]_{\mathrm{1}} ^{\sqrt{\mathrm{2}}\:+\mathrm{1}} \\ $$$$=\sqrt{\mathrm{2}}\left\{\:{arctan}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)−\frac{\pi}{\mathrm{4}}\right\} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{du}}{{u}^{\mathrm{2}} −\sqrt{\mathrm{2}}{u}\:+\mathrm{1}}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{du}}{\left({u}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{2}}}\:=_{{u}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\frac{{t}}{\:\sqrt{\mathrm{2}}}} \:\:\:\:\int_{−\mathrm{1}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:\:\:\frac{{dt}}{\:\sqrt{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$$=\sqrt{\mathrm{2}}\:\left[{arctan}\left({t}\right)\right]_{−\mathrm{1}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \:=\sqrt{\mathrm{2}}\left\{\:{arctan}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)+\frac{\pi}{\mathrm{4}}\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{F}\left({u}\right){du}\:=−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\:+\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}{ln}\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)+\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\left\{{arctan}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)−\frac{\pi}{\mathrm{4}}\right\} \\ $$$$+\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\left\{{arctan}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)−\frac{\pi}{\mathrm{4}}\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:=\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:+\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}}\left\{{ln}\left(\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}+\sqrt{\mathrm{2}}}\right)\right\} \\ $$$$−\pi\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\left\{\:{arctan}\left(\sqrt{\mathrm{2}}\:+\mathrm{1}\right)\:+{arctan}\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)−\frac{\pi}{\mathrm{2}}\right\}\:. \\ $$$$ \\ $$
Commented by ajfour last updated on 30/May/19
$${Congratulations}\:{Sir}.\: \\ $$$${Wonderful}\:{spirit}. \\ $$
Commented by Tawa1 last updated on 30/May/19
$$\mathrm{Wow}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\: \\ $$
Commented by Tawa1 last updated on 30/May/19
$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}.\: \\ $$
Commented by maxmathsup by imad last updated on 30/May/19
$${you}\:{are}\:{welcome}\:{sir}. \\ $$
Commented by perlman last updated on 30/May/19
$${verry}\:{good}\:{worck}! \\ $$
Commented by maxmathsup by imad last updated on 31/May/19
$${thanks}\:{sir}. \\ $$