Question Number 61335 by necx1 last updated on 01/Jun/19
Answered by mr W last updated on 02/Jun/19
$$\mathrm{cos}\:\angle{A}=\frac{\mathrm{5}^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} }{\mathrm{2}×\mathrm{5}×\mathrm{7}}=\frac{\mathrm{1}}{\mathrm{7}} \\ $$$$\Rightarrow\mathrm{sin}\:\angle{A}=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{7}} \\ $$$$\mathrm{cos}\:\angle{B}=\frac{\mathrm{5}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }{\mathrm{2}×\mathrm{5}×\mathrm{8}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\angle{B}=\mathrm{60}° \\ $$$$\Rightarrow\mathrm{sin}\:\angle{B}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\angle{C}=\frac{\mathrm{8}^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }{\mathrm{2}×\mathrm{8}×\mathrm{7}}=\frac{\mathrm{11}}{\mathrm{14}} \\ $$$$\Rightarrow\mathrm{sin}\:\angle{C}=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{14}} \\ $$$${EC}=\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{8}^{\mathrm{2}} −\mathrm{2}×\mathrm{2}×\mathrm{8}×\frac{\mathrm{1}}{\mathrm{2}}}=\mathrm{2}\sqrt{\mathrm{13}} \\ $$$${AD}=\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} −\mathrm{2}×\mathrm{2}×\mathrm{7}×\frac{\mathrm{11}}{\mathrm{14}}}=\sqrt{\mathrm{31}} \\ $$$$\frac{\mathrm{sin}\:\angle{BAD}}{\mathrm{6}}=\frac{\mathrm{sin}\:\angle{B}}{\:\sqrt{\mathrm{31}}} \\ $$$$\Rightarrow\mathrm{sin}\:\angle{BAD}=\frac{\mathrm{6}×\sqrt{\mathrm{3}}}{\mathrm{2}×\sqrt{\mathrm{31}}}=\frac{\mathrm{3}\sqrt{\mathrm{93}}}{\mathrm{31}} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\angle{BAD}}{\mathrm{2}}=\frac{\mathrm{3}\sqrt{\mathrm{93}}}{\mathrm{31}\left[\mathrm{1}+\sqrt{\mathrm{1}−\left(\frac{\mathrm{3}\sqrt{\mathrm{93}}}{\mathrm{31}}\right)^{\mathrm{2}} }\right]}=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}+\sqrt{\mathrm{31}}} \\ $$$$\frac{\mathrm{sin}\:\angle{AEC}}{\mathrm{7}}=\frac{\mathrm{sin}\:\angle{A}}{\mathrm{2}\sqrt{\mathrm{13}}} \\ $$$$\Rightarrow\mathrm{sin}\:\angle{AEC}=\frac{\mathrm{7}×\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{7}×\mathrm{2}\sqrt{\mathrm{13}}}=\frac{\mathrm{2}\sqrt{\mathrm{39}}}{\mathrm{13}} \\ $$$$\Rightarrow\mathrm{tan}\:\frac{\angle{AEC}}{\mathrm{2}}=\frac{\mathrm{2}\sqrt{\mathrm{39}}}{\mathrm{13}\left[\mathrm{1}+\sqrt{\mathrm{1}−\left(\frac{\mathrm{2}\sqrt{\mathrm{39}}}{\mathrm{13}}\right)^{\mathrm{2}} }\right]}=\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{1}+\sqrt{\mathrm{13}}} \\ $$$$\frac{{r}}{\mathrm{tan}\:\frac{\angle{BAD}}{\mathrm{2}}}+\frac{{r}}{\mathrm{tan}\:\frac{\angle{AEC}}{\mathrm{2}}}=\mathrm{3} \\ $$$$\Rightarrow{r}=\frac{\mathrm{3}}{\frac{\mathrm{2}+\sqrt{\mathrm{31}}}{\mathrm{3}\sqrt{\mathrm{3}}}+\frac{\mathrm{1}+\sqrt{\mathrm{13}}}{\mathrm{2}\sqrt{\mathrm{3}}}}=\frac{\mathrm{18}\sqrt{\mathrm{3}}}{\mathrm{7}+\mathrm{3}\sqrt{\mathrm{13}}+\mathrm{2}\sqrt{\mathrm{31}}}=\mathrm{1}.\mathrm{077} \\ $$
Commented by tanmay last updated on 01/Jun/19
$${excellent}\:{sir}… \\ $$
Commented by Tawa1 last updated on 02/Jun/19
$$\mathrm{Sir},\:\mathrm{is}\:\mathrm{the}\:\mathrm{answer}:\:\:\:\frac{\mathrm{18}\sqrt{\mathrm{3}}}{\mathrm{7}\:+\:\mathrm{3}\sqrt{\mathrm{13}}\:+\:\mathrm{2}\sqrt{\mathrm{31}}}\:\:\:=\:\:\mathrm{1}.\mathrm{0768} \\ $$$$\mathrm{please}\:\mathrm{sir},\:\:\mathrm{check}\:\mathrm{if}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{in}\:\mathrm{your}\:\mathrm{work}.\:\: \\ $$$$\mathrm{If}\:\mathrm{non},\:\mathrm{i}\:\mathrm{will}\:\mathrm{go}\:\mathrm{with}\:\mathrm{your}\:\mathrm{answer}. \\ $$
Commented by mr W last updated on 02/Jun/19
$${you}\:{are}\:{right},\:{thanks}! \\ $$$${i}\:{had}\:{a}\:{mistake}\:{due}\:{to}\:{typo}. \\ $$
Commented by Tawa1 last updated on 02/Jun/19
$$\mathrm{Thanks}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir}\:\mathrm{for}\:\mathrm{checking}.\:\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by necx1 last updated on 04/Jun/19
$${excellent}\:{sir} \\ $$