Question Number 61424 by Tawa1 last updated on 02/Jun/19
Answered by mr W last updated on 02/Jun/19
Commented by mr W last updated on 02/Jun/19
$$\mathrm{cos}\:\alpha=\mathrm{sin}\:\beta=\frac{{b}}{\mathrm{2}{a}} \\ $$$$\Rightarrow\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{{b}}{\mathrm{2}{a}} \\ $$$$\Rightarrow\beta=\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{\mathrm{2}{a}} \\ $$$${A}_{{shade}} =\pi{b}^{\mathrm{2}} −\frac{{b}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\alpha−\mathrm{sin}\:\mathrm{2}\alpha\right)−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{4}\beta−\mathrm{sin}\:\mathrm{4}\beta\right) \\ $$$${A}_{{shade}} =\pi{b}^{\mathrm{2}} −\frac{{b}^{\mathrm{2}} }{\mathrm{2}}\left[\mathrm{2}\:\mathrm{cos}^{−\mathrm{1}} \frac{{b}}{\mathrm{2}{a}}−\mathrm{sin}\:\left(\mathrm{2}\:\mathrm{cos}^{−\mathrm{1}} \frac{{b}}{\mathrm{2}{a}}\right)\right]−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left[\mathrm{4}\:\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{\mathrm{2}{a}}−\mathrm{sin}\:\left(\mathrm{4}\:\mathrm{sin}^{−\mathrm{1}} \frac{{b}}{\mathrm{2}{a}}\right)\right] \\ $$
Commented by Tawa1 last updated on 02/Jun/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by alphaprime last updated on 02/Jun/19
Amazing
Commented by mr W last updated on 02/Jun/19
Commented by ajfour last updated on 02/Jun/19
$${shouldn}'{t}\:{it}\:{be}\:{simply} \\ $$$${A}=\pi\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{\alpha}−\boldsymbol{{a}}^{\mathrm{2}} \left(\mathrm{2}\boldsymbol{\beta}−\mathrm{sin}\:\mathrm{2}\boldsymbol{\beta}\right)\: \\ $$
Commented by mr W last updated on 02/Jun/19
$${it}\:{can}\:{be}\:{simplified}\:{further}. \\ $$
Commented by mr W last updated on 02/Jun/19
Commented by mr W last updated on 02/Jun/19
$${A}_{{shade}} =\pi{b}^{\mathrm{2}} −{A}_{\mathrm{1}} −{A}_{\mathrm{2}} \\ $$$${A}_{\mathrm{1}} =\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{4}\beta−\mathrm{sin}\:\mathrm{4}\beta\right) \\ $$$${A}_{\mathrm{2}} =\frac{{b}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{2}\alpha−\mathrm{sin}\:\mathrm{2}\alpha\right) \\ $$
Commented by mr W last updated on 02/Jun/19
$${A}=\pi\boldsymbol{{b}}^{\mathrm{2}} −\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{\alpha}−\boldsymbol{{a}}^{\mathrm{2}} \left(\mathrm{2}\boldsymbol{\beta}−\mathrm{sin}\:\mathrm{2}\boldsymbol{\beta}\right)\: \\ $$$${is}\:{certainly}\:{absolutely}\:{correct}. \\ $$
Commented by ajfour last updated on 02/Jun/19
Commented by Tawa1 last updated on 02/Jun/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by ajfour last updated on 02/Jun/19
$${thanks}. \\ $$