Question Number 61521 by necx1 last updated on 03/Jun/19
Answered by ajfour last updated on 04/Jun/19
Commented by ajfour last updated on 04/Jun/19
$${FB}\:{line}=\frac{{b}}{\mathrm{4}}+\lambda\left({a}−\frac{{b}}{\mathrm{4}}\right) \\ $$$${BE}\:{line}=\mu\left(\frac{{a}}{\mathrm{4}}+\frac{\mathrm{3}{b}}{\mathrm{4}}\right) \\ $$$${r}_{{P}} =\frac{{b}}{\mathrm{4}}+\lambda\left({a}−\frac{{b}}{\mathrm{4}}\right)=\mu\left(\frac{{a}}{\mathrm{4}}+\frac{\mathrm{3}{b}}{\mathrm{4}}\right) \\ $$$$\Rightarrow\:\:\mathrm{4}\lambda=\mu\:\:\&\:\:\:\:\mathrm{1}−\lambda=\mathrm{3}\mu \\ $$$$\Rightarrow\:\:\lambda=\frac{\mathrm{1}}{\mathrm{13}}\:\:,\:\:\mu=\frac{\mathrm{4}}{\mathrm{13}} \\ $$$$\Rightarrow\:\:\:{r}_{{P}} ={BP}\:=\:\frac{{a}+\mathrm{3}{b}}{\mathrm{13}}\:\:\:\:…….\left({i}\right) \\ $$$${AD}={b}+\rho\left(\frac{\mathrm{3}{a}}{\mathrm{7}}−{b}\right) \\ $$$${r}_{{Q}} =\:\frac{{b}}{\mathrm{4}}+\lambda_{\mathrm{1}} \left({a}−\frac{{b}}{\mathrm{4}}\right)={b}+\rho\left(\frac{\mathrm{3}{a}}{\mathrm{7}}−{b}\right) \\ $$$$\Rightarrow\:\:\mathrm{4}−\mathrm{4}\rho=\mathrm{1}−\lambda_{\mathrm{1}} \\ $$$${and}\:\:\:\:\lambda_{\mathrm{1}} =\frac{\mathrm{3}\rho}{\mathrm{7}}\:\: \\ $$$$\Rightarrow\:\:\:\rho=\frac{\mathrm{21}}{\mathrm{25}}\:\:\:,\:\:\:\lambda_{\mathrm{1}} =\frac{\mathrm{9}}{\mathrm{25}} \\ $$$$\:\:\:\:\:{r}_{{Q}} =\frac{\mathrm{4}{b}+\mathrm{9}{a}}{\mathrm{25}}\:\:\:\:\:…..\left({ii}\right) \\ $$$${r}_{{R}} =\mu_{\mathrm{1}} \left(\frac{{a}}{\mathrm{4}}+\frac{\mathrm{3}{b}}{\mathrm{4}}\right)={b}+\rho_{\mathrm{1}} \left(\frac{\mathrm{3}{a}}{\mathrm{7}}−{b}\right) \\ $$$$\Rightarrow\:\:\mu_{\mathrm{1}} =\frac{\mathrm{12}}{\mathrm{7}}\rho_{\mathrm{1}} \:\:\:\:\:;\:\:\:\mathrm{4}−\mathrm{4}\rho_{\mathrm{1}} =\mathrm{3}\mu_{\mathrm{1}} \\ $$$$\Rightarrow\:\:\mathrm{12}−\mathrm{7}\mu_{\mathrm{1}} =\mathrm{9}\mu_{\mathrm{1}} \\ $$$$\Rightarrow\:\:\:\:\:\mu_{\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{4}},\:\:\:\rho_{\mathrm{1}} =\frac{\mathrm{7}}{\mathrm{16}} \\ $$$${r}_{{R}} =\:\frac{\mathrm{3}{a}}{\mathrm{16}}+\frac{\mathrm{9}{b}}{\mathrm{16}}\:\:\:\:\:\:….\left({iii}\right) \\ $$$${PQ}={r}_{{Q}} −{r}_{{P}} =\frac{\mathrm{4}{b}+\mathrm{9}{a}}{\mathrm{25}}−\frac{{a}+\mathrm{3}{b}}{\mathrm{13}} \\ $$$${PR}={r}_{{R}} −{r}_{{P}} =\frac{\mathrm{3}{a}+\mathrm{9}{b}}{\mathrm{16}}−\frac{{a}+\mathrm{3}{b}}{\mathrm{13}} \\ $$$${A}_{{shaded}} =\frac{\mathrm{1}}{\mathrm{2}}\mid{PQ}×{PR}\mid \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left[\left(\frac{\mathrm{9}}{\mathrm{25}}−\frac{\mathrm{1}}{\mathrm{13}}\right)\left(\frac{\mathrm{9}}{\mathrm{16}}−\frac{\mathrm{3}}{\mathrm{13}}\right)−\left(\frac{\mathrm{4}}{\mathrm{25}}−\frac{\mathrm{3}}{\mathrm{13}}\right)\left(\frac{\mathrm{3}}{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{13}}\right)\right]\mid{a}×{b}\mid \\ $$$$\:\:\:=\left[\frac{\mathrm{92}}{\mathrm{25}×\mathrm{13}}×\frac{\mathrm{69}}{\mathrm{16}×\mathrm{13}}+\frac{\mathrm{23}}{\mathrm{25}×\mathrm{13}}×\frac{\mathrm{23}}{\mathrm{16}×\mathrm{13}}\right]\bigtriangleup_{{ABC}} \\ $$$$\:\:=\left[\frac{\mathrm{92}×\mathrm{69}+\mathrm{23}×\mathrm{23}}{\mathrm{25}×\mathrm{16}×\mathrm{169}}\right]\bigtriangleup_{{ABC}} \\ $$$$\:{A}_{{shaded}} \:=\:\frac{\mathrm{529}}{\mathrm{5200}}\bigtriangleup_{{ABC}} \:\:\approx\:\mathrm{10}.\mathrm{173\%}. \\ $$$$\bigtriangleup_{{ABC}} =\sqrt{\frac{\mathrm{19}}{\mathrm{2}}\left(\frac{\mathrm{19}}{\mathrm{2}}−\mathrm{7}\right)\left(\frac{\mathrm{19}}{\mathrm{2}}−\mathrm{4}\right)\left(\frac{\mathrm{19}}{\mathrm{2}}−\mathrm{8}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{19}×\mathrm{5}×\mathrm{11}×\mathrm{3}}}{\mathrm{4}} \\ $$$${Area}_{{shaded}} =\frac{\mathrm{529}}{\mathrm{5200}}×\frac{\sqrt{\mathrm{3135}}}{\mathrm{4}} \\ $$$$\:\boldsymbol{{A}}_{{shaded}} \:=\frac{\mathrm{529}\sqrt{\mathrm{3135}}}{\mathrm{20800}}\:\approx\:\mathrm{1}.\mathrm{424004}\: \\ $$
Commented by Tawa1 last updated on 05/Jun/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$