Question Number 61537 by aanur last updated on 04/Jun/19
Commented by aanur last updated on 04/Jun/19
$${sir}\:{could}\:{you}\:{help}\:{me} \\ $$
Commented by math1967 last updated on 04/Jun/19
$${xyz}×\sqrt{{x}^{\mathrm{2}} ×{y}^{\mathrm{2}} ×{z}^{\mathrm{2}} }\:=\mathrm{4}×\mathrm{9}×\mathrm{16} \\ $$$${x}^{\mathrm{2}} ×{y}^{\mathrm{2}} ×{z}^{\mathrm{2}} =\mathrm{4}×\mathrm{9}×\mathrm{16}\Rightarrow{xyz}=\mathrm{2}×\mathrm{3}×\mathrm{4} \\ $$
Answered by MJS last updated on 04/Jun/19
$$\left(\mathrm{1}\right)\:\Rightarrow\:{z}=\frac{\mathrm{16}}{{x}^{\mathrm{2}} {y}} \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{4}\sqrt{{y}}}{\:\sqrt{{x}}}=\mathrm{9} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{16}}{\:\sqrt{{x}^{\mathrm{3}} {y}}}=\mathrm{16} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\Rightarrow\:{y}=\frac{\mathrm{81}{x}}{\mathrm{16}}\:\Rightarrow\:{z}=\frac{\mathrm{256}}{\mathrm{81}{x}^{\mathrm{3}} } \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{64}}{\mathrm{9}{x}^{\mathrm{2}} }=\mathrm{16}\:\Rightarrow\:{x}=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow\:{y}=\frac{\mathrm{27}}{\mathrm{8}}\:\wedge\:{z}=\frac{\mathrm{32}}{\mathrm{3}} \\ $$
Answered by Kunal12588 last updated on 04/Jun/19
$$\left.{i}\right)\:{x}\sqrt{{yz}}=\mathrm{4} \\ $$$$\left.{ii}\right)\:{y}\sqrt{{xz}}=\mathrm{9} \\ $$$$\left.{iii}\right)\:{z}\sqrt{{xy}}=\mathrm{16} \\ $$$${i}×{ii}×{iii} \\ $$$$\Rightarrow{xyz}\sqrt{{x}^{\mathrm{2}} {y}^{\mathrm{2}} {z}^{\mathrm{2}} }=\mathrm{2}^{\mathrm{6}} ×\mathrm{3}^{\mathrm{2}} \\ $$$$\Rightarrow\left({xyz}\right)^{\mathrm{2}} =\mathrm{2}^{\mathrm{6}} ×\mathrm{3}^{\mathrm{2}} \\ $$$$\Rightarrow{xyz}=\mathrm{2}^{\mathrm{3}} ×\mathrm{3}=\mathrm{24} \\ $$$$\left({i}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} {yz}=\mathrm{4}^{\mathrm{2}} =\mathrm{16} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} {yz}}{{xyz}}=\frac{\mathrm{16}}{\mathrm{24}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\left({ii}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{xy}^{\mathrm{2}} {z}=\mathrm{81} \\ $$$$\Rightarrow{y}=\frac{\mathrm{81}}{\mathrm{24}}=\frac{\mathrm{27}}{\mathrm{8}} \\ $$$$\left({iii}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{xyz}^{\mathrm{2}} =\mathrm{256} \\ $$$$\Rightarrow{z}=\frac{\mathrm{256}}{\mathrm{24}}=\frac{\mathrm{32}}{\mathrm{3}} \\ $$