Menu Close

Question-61554




Question Number 61554 by ajfour last updated on 04/Jun/19
Commented by ajfour last updated on 04/Jun/19
Find a,b, and s.
$${Find}\:{a},{b},\:{and}\:{s}. \\ $$
Answered by MJS last updated on 04/Jun/19
a^2 +(b+s)^2 =25  (a−s)^2 +(b+s)^2 =16  s^2 +(b+s)^2 =9  solving these leads to  a=((√3)/3)(√(25+2(√(193))))≈4.19463  b=((√3)/3)((√(50−2(√(193))))−(√(−23+2(√(193)))))≈1.45830  s=((√3)/3)(√(−23+2(√(193))))≈1.26292
$${a}^{\mathrm{2}} +\left({b}+{s}\right)^{\mathrm{2}} =\mathrm{25} \\ $$$$\left({a}−{s}\right)^{\mathrm{2}} +\left({b}+{s}\right)^{\mathrm{2}} =\mathrm{16} \\ $$$${s}^{\mathrm{2}} +\left({b}+{s}\right)^{\mathrm{2}} =\mathrm{9} \\ $$$$\mathrm{solving}\:\mathrm{these}\:\mathrm{leads}\:\mathrm{to} \\ $$$${a}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\sqrt{\mathrm{25}+\mathrm{2}\sqrt{\mathrm{193}}}\approx\mathrm{4}.\mathrm{19463} \\ $$$${b}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left(\sqrt{\mathrm{50}−\mathrm{2}\sqrt{\mathrm{193}}}−\sqrt{−\mathrm{23}+\mathrm{2}\sqrt{\mathrm{193}}}\right)\approx\mathrm{1}.\mathrm{45830} \\ $$$${s}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\sqrt{−\mathrm{23}+\mathrm{2}\sqrt{\mathrm{193}}}\approx\mathrm{1}.\mathrm{26292} \\ $$
Commented by ajfour last updated on 04/Jun/19
Thanks Sir, i shall check.
$${Thanks}\:{Sir},\:{i}\:{shall}\:{check}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *