Menu Close

Question-61675




Question Number 61675 by peter frank last updated on 06/Jun/19
Commented by peter frank last updated on 06/Jun/19
find  solution of D.E
$${find}\:\:{solution}\:{of}\:{D}.{E} \\ $$
Answered by ajfour last updated on 06/Jun/19
((x^4 dy)/dx)+x^3 y+sec xy=0  ⇒ x((dy/dx))+y=−((sec xy)/x^3 )  ⇒  ∫cos (xy)d(xy)=−∫ (dx/x^3 )  ⇒  sin (xy)=(1/(2x^2 ))+c .
$$\frac{{x}^{\mathrm{4}} {dy}}{{dx}}+{x}^{\mathrm{3}} {y}+\mathrm{sec}\:{xy}=\mathrm{0} \\ $$$$\Rightarrow\:{x}\left(\frac{{dy}}{{dx}}\right)+{y}=−\frac{\mathrm{sec}\:{xy}}{{x}^{\mathrm{3}} } \\ $$$$\Rightarrow\:\:\int\mathrm{cos}\:\left({xy}\right){d}\left({xy}\right)=−\int\:\frac{{dx}}{{x}^{\mathrm{3}} } \\ $$$$\Rightarrow\:\:\mathrm{sin}\:\left({xy}\right)=\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }+{c}\:. \\ $$
Commented by peter frank last updated on 06/Jun/19
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *