Menu Close

Question-61809




Question Number 61809 by aliesam last updated on 09/Jun/19
Commented by maxmathsup by imad last updated on 10/Jun/19
let A =∫_0 ^1    (x^n /( (√(ln(x))))) dx ⇒ A = ∫_0 ^1  (x^n /( (√(−(−lnx))))) dx =(1/( (√(−1)))) ∫_0 ^1   (x^n /( (√(−ln(x))))) dx  changement  (√(−ln(x)))=t give −ln(x) =t^2  ⇒ln(x) =−t^2  ⇒x =e^(−t^2 )  ⇒  A = (1/i) ∫_(+∞) ^0    (e^(−nt^2 ) /t) (−2t)e^(−t^2 ) dt = (2/i) ∫_0 ^∞    e^(−(n+1)t^2 ) dt =−2i ∫_0 ^∞  e^(−(n+1)t^2 ) dt  =_((√(n+1))t =u)    −2i ∫_0 ^∞   e^(−u^2 ) (du/( (√(n+1)))) =((−2i)/( (√(n+1)))) ∫_0 ^∞   e^(−u^2 ) du =((−2i)/( (√(n+1))))((√π)/2) ⇒  A =((−i(√π))/( (√(n+1)))) .
letA=01xnln(x)dxA=01xn(lnx)dx=1101xnln(x)dxchangementln(x)=tgiveln(x)=t2ln(x)=t2x=et2A=1i+0ent2t(2t)et2dt=2i0e(n+1)t2dt=2i0e(n+1)t2dt=n+1t=u2i0eu2dun+1=2in+10eu2du=2in+1π2A=iπn+1.
Answered by perlman last updated on 09/Jun/19
(√(ln(x)))=i(√(−ln(x)))  ∀x∈]0;1]  withe (√(−ln(x)))=y  x=e^(−y^2 )   =∫_(+∞) ^0 (e^(−ny^2 ) /(iy))(−2y)e^(−y^2 ) dy  =i∫_0 ^(+∞) e^(−(n+1)y^2 ) dy  let z=(√((n+1)))y  dz=(√(n+1))dy  =i∫_0 ^(+∞) (√(n+1))e^(−z^2 ) dz=i(√(n+1))∫_0 ^(+∞) e^(−z^2 ) dz=i(√(n+1))((√π)/2)
ln(x)=iln(x)x]0;1]witheln(x)=yx=ey2=+0eny2iy(2y)ey2dy=i0+e(n+1)y2dyletz=(n+1)ydz=n+1dy=i0+n+1ez2dz=in+10+ez2dz=in+1π2

Leave a Reply

Your email address will not be published. Required fields are marked *