Question Number 61864 by Tawa1 last updated on 10/Jun/19
Commented by MJS last updated on 10/Jun/19
$$\mathrm{I}\:\mathrm{cannot}\:\mathrm{read}\:\mathrm{the}\:\mathrm{fraction}.\:\mathrm{Is}\:\mathrm{it}\:\frac{\mathrm{3}}{\mathrm{2}}{k}? \\ $$
Commented by Tawa1 last updated on 10/Jun/19
$$\mathrm{Yes}\:\mathrm{sir} \\ $$
Commented by MJS last updated on 10/Jun/19
$$\mathrm{ok}\:\mathrm{I}'\mathrm{ll}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{after}\:\mathrm{dinner} \\ $$
Answered by MJS last updated on 10/Jun/19
$$\mathrm{par}:\:{y}=−{x}^{\mathrm{2}} +{bx}+{c} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{8}{k}}\end{pmatrix}\in\mathrm{par}\:\:\Rightarrow\:{c}=\mathrm{8}{k} \\ $$$$\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\begin{pmatrix}{{k}}\\{\mathrm{6}{k}}\end{pmatrix}\in\mathrm{par}\:\Rightarrow\:\mathrm{6}{k}=−{k}^{\mathrm{2}} +{bk}+\mathrm{8}{k}\:\Rightarrow\:{b}={k}−\mathrm{2} \\ $$$$\mathrm{par}:\:{y}=−{x}^{\mathrm{2}} +\left({k}−\mathrm{2}\right){x}+\mathrm{8}{k} \\ $$$$ \\ $$$$\mathrm{tangent}:\:{y}=\alpha{x}+\beta \\ $$$$\mathrm{method}\:\mathrm{1} \\ $$$$\left.\begin{matrix}{\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\begin{pmatrix}{{k}}\\{\mathrm{6}{k}}\end{pmatrix}\in\mathrm{t}\:\Rightarrow\:\mathrm{6}{k}=\alpha{k}+\beta}\\{\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\begin{pmatrix}{\frac{\mathrm{3}{k}}{\mathrm{2}}}\\{\mathrm{0}}\end{pmatrix}\in\mathrm{t}\:\Rightarrow\:\mathrm{0}=\alpha\frac{\mathrm{3}{k}}{\mathrm{2}}+\beta}\end{matrix}\right\}\:\Rightarrow\:\alpha=−\mathrm{12}\wedge\beta=\mathrm{18}{k} \\ $$$$\mathrm{t}:\:{y}=−\mathrm{12}{x}+\mathrm{18}{k} \\ $$$$ \\ $$$$\mathrm{method}\:\mathrm{2} \\ $$$$\mathrm{tangent}\:\mathrm{of}\:\mathrm{parabola}\:{y}=−{x}^{\mathrm{2}} +{bx}+{c}\:\mathrm{in}\:\begin{pmatrix}{{p}}\\{−{p}^{\mathrm{2}} +{bp}+{c}}\end{pmatrix}:\: \\ $$$$\mathrm{t}:\:{y}=\left({b}−\mathrm{2}{p}\right){x}+\left({c}+{p}^{\mathrm{2}} \right) \\ $$$$\mathrm{in}\:\mathrm{our}\:\mathrm{case} \\ $$$$\mathrm{t}:\:{y}=−\left({k}+\mathrm{2}\right){x}+{k}\left({k}+\mathrm{8}\right) \\ $$$$ \\ $$$$\mathrm{t}:\:{y}=−\mathrm{12}{x}+\mathrm{18}{k}\:\wedge\:\mathrm{t}:\:{y}=−\left({k}+\mathrm{2}\right){x}+{k}\left({k}+\mathrm{8}\right)\:\Rightarrow \\ $$$$\Rightarrow\:−\mathrm{12}=−\left({k}+\mathrm{2}\right)\:\wedge\:\mathrm{18}{k}={k}\left({k}+\mathrm{8}\right)\:\Rightarrow\:{k}=\mathrm{10} \\ $$$$ \\ $$$$\mathrm{par}:\:{y}=−{x}^{\mathrm{2}} +\mathrm{8}{x}+\mathrm{80} \\ $$$$\mathrm{t}:\:\:\:\:\:\:{y}=−\mathrm{12}{x}+\mathrm{180} \\ $$$$ \\ $$$$\mathrm{shaded}\:\mathrm{area}\:=\:\underset{{k}} {\overset{\mathrm{3}{k}/\mathrm{2}} {\int}}\mathrm{t}{dx}−\underset{{k}} {\overset{\mathrm{3}{k}/\mathrm{2}} {\int}}\mathrm{par}{dx}= \\ $$$$=\underset{\mathrm{10}} {\overset{\mathrm{15}} {\int}}\left({x}^{\mathrm{2}} −\mathrm{20}{x}+\mathrm{100}\right){dx}=\frac{\mathrm{125}}{\mathrm{3}} \\ $$
Commented by Tawa1 last updated on 10/Jun/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$