Menu Close

Question-61994




Question Number 61994 by ajfour last updated on 13/Jun/19
Commented by ajfour last updated on 13/Jun/19
Find the r of largest size sphere   that can rest against the rim of  cylinder on one side and the  stick on the other side.
Findthe\boldsymbolroflargestsizespherethatcanrestagainsttherimofcylinderononesideandthestickontheotherside.
Answered by mr W last updated on 13/Jun/19
((r+h)/r)=((√((2R)^2 +h^2 ))/(2R))  ⇒r_(max) =(h/( (√(1+((h/(2R)))^2 ))−1))
r+hr=(2R)2+h22Rrmax=h1+(h2R)21
Commented by ajfour last updated on 13/Jun/19
not surprising, seems natural Sir.  I just viewed your conclusion sir.
notsurprising,seemsnaturalSir.Ijustviewedyourconclusionsir.
Commented by mr W last updated on 13/Jun/19
Commented by mr W last updated on 13/Jun/19
this is maybe not the largest possible  sphere, since the stick (blue line) can  also be in other positions. it only   needs to touch the sphere.
thisismaybenotthelargestpossiblesphere,sincethestick(blueline)canalsobeinotherpositions.itonlyneedstotouchthesphere.
Commented by mr W last updated on 13/Jun/19
Commented by ajfour last updated on 13/Jun/19
O′ yes, understood sir, sphere  can be balanced at one point even.  Thanks.
Oyes,understoodsir,spherecanbebalancedatonepointeven.Thanks.
Commented by mr W last updated on 13/Jun/19
position of stick is θ. it touches the  sphere at point P.  C(−R, 0, h+r)  A(−R cos θ, −R sin θ, 0)  B(R cos θ, R sin θ, h)  eqn. of line AB (stick):  ((x+R cos θ)/(2R cos θ))=((y+R sin θ)/(2R sin θ))=(z/h)=k  ⇒x=R cos θ(2k−1)  ⇒y=R sin θ(2k−1)  ⇒z=hk  distance from point C to line AB=d:  D=d^2 =[R cos θ (2k−1)+R]^2 +[R sin θ (2k−1))]^2 +[hk−h−r]^2   =2R^2 [2k^2 −(2k−1)(1−cos θ)]+(hk−h−r)^2   =4R^2 [k^2 −(2k−1) sin^2  (θ/2)]+(hk−h−r)^2   (dD/dk)=0  4R^2 (k−sin^2  (θ/2))+(hk−h−r)h=0  ⇒k=(((h+r)h+4R^2 sin^2  (θ/2))/(4R^2 +h^2 ))=((1+4((R/h))^2 sin^2  (θ/2)+(r/h))/(1+4((R/h))^2 ))  ((r/h))^2 =4((R/h))^2 [k^2 −(2k−1) sin^2  (θ/2)]+(k−1−(r/h))^2   let ρ=(R/h), λ=(r/h)  ⇒k=1+((λ−4ρ^2  cos^2  (θ/2))/(1+4ρ^2 ))  0=4ρ^2 [((λ/(1+4ρ^2 ))−((4ρ^2  cos^2  (θ/2))/(1+4ρ^2 )))^2 −2((λ/(1+4ρ^2 ))−((4ρ^2  cos^2  (θ/2))/(1+4ρ^2 ))) cos^2  (θ/2)−cos^2  (θ/2)]+((λ/(1+4ρ^2 ))−((4ρ^2  cos^2  (θ/2))/(1+4ρ^2 ))−2λ)((λ/(1+4ρ^2 ))−((4ρ^2  cos^2  (θ/2))/(1+4ρ^2 )))  ⇒max. λ is when θ=0
positionofstickisθ.ittouchesthesphereatpointP.C(R,0,h+r)A(Rcosθ,Rsinθ,0)B(Rcosθ,Rsinθ,h)eqn.oflineAB(stick):x+Rcosθ2Rcosθ=y+Rsinθ2Rsinθ=zh=kx=Rcosθ(2k1)y=Rsinθ(2k1)z=hkdistancefrompointCtolineAB=d:D=d2=[Rcosθ(2k1)+R]2+[Rsinθ(2k1))]2+[hkhr]2=2R2[2k2(2k1)(1cosθ)]+(hkhr)2=4R2[k2(2k1)sin2θ2]+(hkhr)2dDdk=04R2(ksin2θ2)+(hkhr)h=0k=(h+r)h+4R2sin2θ24R2+h2=1+4(Rh)2sin2θ2+rh1+4(Rh)2(rh)2=4(Rh)2[k2(2k1)sin2θ2]+(k1rh)2letρ=Rh,λ=rhk=1+λ4ρ2cos2θ21+4ρ20=4ρ2[(λ1+4ρ24ρ2cos2θ21+4ρ2)22(λ1+4ρ24ρ2cos2θ21+4ρ2)cos2θ2cos2θ2]+(λ1+4ρ24ρ2cos2θ21+4ρ22λ)(λ1+4ρ24ρ2cos2θ21+4ρ2)max.λiswhenθ=0
Commented by mr W last updated on 13/Jun/19
Commented by mr W last updated on 13/Jun/19
yes sir!  optimum in the nature is always in  symmetry.
yessir!optimuminthenatureisalwaysinsymmetry.

Leave a Reply

Your email address will not be published. Required fields are marked *