Question Number 62112 by aliesam last updated on 15/Jun/19
Answered by MJS last updated on 15/Jun/19
$$\mathrm{sin}^{\mathrm{10}} \:{x}\:+\mathrm{cos}^{\mathrm{10}} \:{x}\:=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\frac{\mathrm{5}}{\mathrm{128}}\mathrm{cos}\:\mathrm{8}{x}\:+\frac{\mathrm{15}}{\mathrm{32}}\mathrm{cos}\:\mathrm{4}{x}\:+\frac{\mathrm{63}}{\mathrm{128}}=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\mathrm{cos}\:\mathrm{8}{x}\:+\mathrm{12cos}\:\mathrm{4}{x}\:+\frac{\mathrm{43}}{\mathrm{9}}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:{t} \\ $$$$−\frac{\mathrm{56}{t}^{\mathrm{4}} −\mathrm{32}{t}^{\mathrm{2}} −\mathrm{160}}{\mathrm{9}\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\frac{\left({t}^{\mathrm{2}} −\mathrm{2}\right)\left(\mathrm{7}{t}^{\mathrm{2}} +\mathrm{10}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\:{t}=\pm\sqrt{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{sin}^{\mathrm{12}} \:{x}\:+\mathrm{cos}^{\mathrm{12}} \:{x}\:=\frac{\mathrm{1}}{\mathrm{1024}}\mathrm{cos}\:\mathrm{12}{x}\:+\frac{\mathrm{33}}{\mathrm{512}}\mathrm{cos}\:\mathrm{8}{x}\:+\frac{\mathrm{495}}{\mathrm{1024}}\mathrm{cos}\:\mathrm{4}{x}\:+\frac{\mathrm{231}}{\mathrm{512}}= \\ $$$$=\frac{\left({t}^{\mathrm{2}} +\mathrm{2}\right)\left({t}^{\mathrm{4}} +\mathrm{16}{t}^{\mathrm{2}} +\mathrm{16}\right)}{\mathrm{32}\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }=\frac{\mathrm{13}}{\mathrm{54}} \\ $$$${m}+{n}=\mathrm{67} \\ $$
Commented by MJS last updated on 15/Jun/19
$$\mathrm{please}\:\mathrm{study}\:\mathrm{the}\:\mathrm{transformation}\:\mathrm{formulas} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{trigonometric}\:\mathrm{functions}.\:\mathrm{I}'\mathrm{m}\:\mathrm{too}\:\mathrm{busy} \\ $$$$\mathrm{to}\:\mathrm{type}\:\mathrm{them}\:\mathrm{all} \\ $$
Commented by aliesam last updated on 15/Jun/19
$${ok}\:{i}\:{will}\:{and}\:{thank}\:{you}\:{sir} \\ $$
Answered by mr W last updated on 15/Jun/19
$$\mathrm{sin}^{\mathrm{10}} \:{x}+\mathrm{cos}^{\mathrm{10}} \:{x}=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\left(\mathrm{sin}^{\mathrm{2}} \:{x}\right)^{\mathrm{5}} +\left(\mathrm{cos}^{\mathrm{2}} \:{x}\right)^{\mathrm{5}} =\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\left(\mathrm{sin}^{\mathrm{2}} \:{x}+\mathrm{cos}^{\mathrm{2}} \:{x}\right)\left(\mathrm{sin}^{\mathrm{8}} \:{x}−\mathrm{sin}^{\mathrm{6}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}+\mathrm{sin}^{\mathrm{4}} \:{x}\:\mathrm{cos}^{\mathrm{4}} \:{x}−\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{6}} \:{x}+\mathrm{cos}^{\mathrm{8}} \:{x}\right)=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\left(\mathrm{sin}^{\mathrm{4}} \:{x}+\mathrm{cos}^{\mathrm{4}} \:{x}\right)^{\mathrm{2}} −\mathrm{sin}^{\mathrm{6}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}−\mathrm{sin}^{\mathrm{4}} \:{x}\:\mathrm{cos}^{\mathrm{4}} \:{x}−\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{6}} \:{x}=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}\right)^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}\right)−\mathrm{sin}^{\mathrm{4}} \:{x}\:\mathrm{cos}^{\mathrm{4}} \:{x}=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$${let}\:{s}=\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}=\frac{\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}{x}}{\mathrm{4}}\leqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left(\mathrm{1}−\mathrm{2}{s}\right)^{\mathrm{2}} −{s}\left(\mathrm{1}−\mathrm{2}{s}\right)−{s}^{\mathrm{2}} =\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\Rightarrow{s}^{\mathrm{2}} −{s}+\frac{\mathrm{5}}{\mathrm{36}}=\mathrm{0} \\ $$$$\Rightarrow{s}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}\pm\frac{\mathrm{2}}{\mathrm{3}}\right)=\frac{\mathrm{1}}{\mathrm{6}},\:\frac{\mathrm{5}}{\mathrm{6}}\:\Rightarrow{s}=\frac{\mathrm{1}}{\mathrm{6}}<\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$$\mathrm{sin}^{\mathrm{12}} \:{x}+\mathrm{cos}^{\mathrm{12}} \:{x} \\ $$$$=\left(\mathrm{sin}^{\mathrm{4}} \:{x}\right)^{\mathrm{3}} +\left(\mathrm{cos}^{\mathrm{4}} \:{x}\right)^{\mathrm{3}} \\ $$$$=\left(\mathrm{sin}^{\mathrm{4}} \:{x}+\mathrm{cos}^{\mathrm{4}} \:{x}\right)\left(\mathrm{sin}^{\mathrm{8}} \:{x}−\mathrm{sin}^{\mathrm{4}} \:{x}\:\mathrm{cos}^{\mathrm{4}} \:{x}+\mathrm{cos}^{\mathrm{8}} \:{x}\right) \\ $$$$=\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}\right)\left[\left(\mathrm{sin}^{\mathrm{4}} \:{x}+\mathrm{cos}^{\mathrm{4}} \:{x}\right)^{\mathrm{2}} −\mathrm{3}\:\mathrm{sin}^{\mathrm{4}} \:{x}\:\mathrm{cos}^{\mathrm{4}} \:{x}\right] \\ $$$$=\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}\right)\left[\left(\mathrm{1}−\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}\right)^{\mathrm{2}} −\mathrm{3}\:\mathrm{sin}^{\mathrm{4}} \:{x}\:\mathrm{cos}^{\mathrm{4}} \:{x}\right] \\ $$$$=\left(\mathrm{1}−\mathrm{2}{s}\right)\left[\left(\mathrm{1}−\mathrm{2}{s}\right)^{\mathrm{2}} −\mathrm{3}{s}^{\mathrm{2}} \right] \\ $$$$=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)\left[\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} −\mathrm{3}×\frac{\mathrm{1}}{\mathrm{6}^{\mathrm{2}} }\right] \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\left[\frac{\mathrm{4}}{\mathrm{9}}−\frac{\mathrm{1}}{\mathrm{12}}\right] \\ $$$$=\frac{\mathrm{13}}{\mathrm{54}}=\frac{{m}}{{n}} \\ $$$$\Rightarrow{m}+{n}=\mathrm{13}+\mathrm{54}=\mathrm{67} \\ $$$$ \\ $$$${generally}: \\ $$$${if}\:\mathrm{sin}^{\mathrm{10}} \:{x}+\mathrm{cos}^{\mathrm{10}} \:{x}={a}\:\:\:\:\left(\frac{\mathrm{1}}{\mathrm{16}}\leqslant{a}\leqslant\mathrm{1}\right) \\ $$$${then} \\ $$$$\mathrm{sin}^{\mathrm{12}} \:{x}+\mathrm{cos}^{\mathrm{12}} \:{x}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{1}+\mathrm{4}{a}}{\mathrm{5}}}\left(\frac{\mathrm{2}{a}−\mathrm{7}}{\mathrm{5}}+\mathrm{3}\sqrt{\frac{\mathrm{1}+\mathrm{4}{a}}{\mathrm{5}}}\right) \\ $$